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ABSTRACT 
Sum of Ranking Differences is an innovative statistical method that ranks competing 

solutions based on a reference point. The latter might arise naturally, or can be 

aggregated from the data. We provide two case studies to feature both possibilities. 

Apportionment and districting are two critical issues that emerge in relation to 

democratic elections. Theoreticians invented clever heuristics to measure 

malapportionment and the compactness of the shape of the constituencies, yet, there 

is no unique best method in either cases. Using data from Norway and the US we 

rank the standard methods both for the apportionment and for the districting 

problem. In case of apportionment, we find that all the classical methods perform 

reasonably well, with subtle but significant differences. By a small margin the 

Leximin method emerges as a winner, but -- somewhat unexpectedly -- the non-

regular Imperiali method ties for first place. In districting, the Lee-Sallee index and a 

novel parametric method the so-called Moment Invariant performs the best, although 

the latter is sensitive to the function's chosen parameter. 
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Választókörzetek kiosztása és kialakítása rangkülönbségek 
összegével  

R. SZIKLAI BALÁZS –HÉBERGER KÁROLY 

ÖSSZEFOGLALÓ 

A rangkülönbségek összege (SRD) egy innovatív statisztikai módszer, amely 

különböző megoldásokat képes összevetni egy referenciapont alapján. Ez utóbbi 

adódhat természetes módon, vagy előállítható az adatokból. Tanulmányunkban egy-

egy esettanulmányon keresztül mindkettőre mutatunk példát. A körzetkiosztási és 

kialakítási probléma két kritikusan fontos vetülete egy demokratikus választási 

eljárásnak. Elméleti szakemberek ügyes heurisztikákat találtak ki arra, hogyan lehet 

mérni az egyes kiosztások aránytalanságát, vagy a körzetek alakjának kompaktságát - 

egyik esetben sem létezik azonban legjobb módszer. Norvég és Egyesült Államokbeli 

adatokat felhasználva rangsoroljuk a leggyakrabban alkalmazott körzetkiosztó 

módszereket és kompaktsági mértékeket. A körzetkiosztási probléma esetén azt 

találtuk, hogy az összes klasszikus módszer meglehetősen jól teljesít, kis de 

szignifikáns különbségekkel. A legjobb módszernek a Leximin adódott, de némileg 

meglepő módon, a nem-reguláris Imperiali módszer is vele holtversenyben az első 

helyen végzett. A kompaktsági mértékek közül a Lee-Sallee index és az invariáns 

momentumok módszere teljesített a legjobban, bár ez utóbbi érzékeny arra milyen 

paraméter mellett futtatják. 

 

 

 

 

JEL: C44, K16 

Kulcsszavak: körzetkiosztás, körzetkialakítás, Gerrymandering, kompaktsági 

mértékek, többváltozós optimalizálás, Rangkülönbségek összege 

 

 



Apportionment and Districting by Sum of Ranking

Differences

Balázs R. Sziklai1,2 and Károly Héberger3

1
Centre for Economic and Regional Studies, Hungarian Academy of Sciences, Tóth Kálmán u. 4,
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Abstract

Sum of Ranking Differences is an innovative statistical method that ranks com-

peting solutions based on a reference point. The latter might arise naturally, or

can be aggregated from the data. We provide two case studies to feature both

possibilities. Apportionment and districting are two critical issues that emerge in

relation to democratic elections. Theoreticians invented clever heuristics to mea-

sure malapportionment and the compactness of the shape of the constituencies, yet,

there is no unique best method in either cases. Using data from Norway and the US

we rank the standard methods both for the apportionment and for the districting

problem. In case of apportionment, we find that all the classical methods perform

reasonably well, with subtle but significant differences. By a small margin the Lex-

imin method emerges as a winner, but – somewhat unexpectedly – the non-regular

Imperiali method ties for first place. In districting, the Lee-Sallee index and a novel

parametric method the so-called Moment Invariant performs the best, although the

latter is sensitive to the function’s chosen parameter.
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1 Introduction

Comparing apples and oranges is never easy. But what if we are forced to do so? Fair

division methods are hard to compare as each one was designed with a different goal

in mind. One way to deal with the problem is axiomatic analysis. Finding out which

method satisfies which fairness properties and make a choice based on this analysis. Policy

makers, however, might need to evaluate the efficiency of their measures or need to justify

their decisions by providing some numerical evidence. Thus, another stream of literature

focuses on quantifying different aspects of the methods and comparing them numerically

– Sum of Ranking Differences (SRD) follows this path.

The aim of this paper is twofold. Firstly, to promote SRD, a novel statistical method

which is rapidly gaining popularity in various fields of applied science, such as analytical

chemistry (Andrić, 2018; Brownfield and Kalivas, 2017), pharmacology (Ristovski et al.,

2018), decision making (Lourenço and Lebensztajn, 2018), and finance (see case study No.

2 in (Kollár-Hunek and Héberger, 2013)) and which can be also potentially interesting

to the Political Science and Social Choice community. Secondly, to use this method to

analyse two notoriously divisive issues related to proportional representation. These two

issues represent two typical problem sets in social choice literature: fair division and fair

assessment problems.

SRD allows us to select the most adequate solution among outcomes with different

features based on a reference point. This situation is very common in multiobjective

optimization, where the decision maker has to choose between many possible Pareto-

optimal outcomes (Lourenço and Lebensztajn, 2018). The problem analogous to fair

division, where solutions satisfy different sets of fairness criteria. Since these criteria are

usually conflicting, meaning there is no universally best solution, the decision maker has

to choose one among them.

There are a number of problem instances where this kind of analysis can be valu-

able. Possible applications include, among others, the comparison of resource allocation

schemes (e.g. cooperative game theoretical solutions, cake cutting rules) and the ranking

of different measures (e.g. voting power indices, centrality measures). Thus, SRD can be

applied to a wide variety of problems. Here we demonstrate its usefulness by ranking

the solutions of two frequently studied problems in Political Science: apportionment and

districting. The first can be characterized as a fair division problem while the second
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belongs to fair assessment. Ricca et al. (2017) provides a very nice introduction to both

topics.

The idea of proportional representation is prevalent in parliamentary democracies.

Elections are considered fair if each voter has approximately the same amount of influence

on the outcome. In most democratic countries, some members of the House are elected

directly in single member constituencies. These constituencies are created by dividing up

larger administrative regions, e.g. counties or states. To ensure equal representation, the

seats of the House have to be distributed among these administrative units in proportion

to their population1. In other words, the sizes of the constituencies have to be more or less

the same. What makes this task difficult is that allocating a fixed number of seats among

counties of different sizes often leads to divisibility issues. As fractional seats cannot be

allotted, we have to decide which county gets more and which one gets less seats than its

fair share.

Legislative bodies, both in the US and in Europe advocate that proportionality should

be the key factor in apportionment. In the US, the 14th amendment already established

proportionality as a fundamental principle (Balinski and Young, 1975). In Europe the

Venice Commission, the advisory body of the Council of Europe in the field of consti-

tutional law also attested that equality of voting power should be achieved by creating

constituencies of equal size (Venice Commission (2002), Section 2.2, §13-15).

Even-sized constituencies are a necessary but not sufficient condition for proportional

representation. Elections are often manipulated by gerrymandering - the redesign of

constituency boundaries with the intention to favour one of the parties2. As a result some

constituencies obtain an unnatural, grotesque shape. Constituency boundaries may be

affected by the geography of the region, by administrative or historic boundary lines, or

because of the concentration of a specific national minority, but often the sole reason of

districting is to manipulate the outcome of the election. Hence, there is a fine line between

districting for valid reasons and gerrymandering.

To combat this weakness, US states impose a number of standards for redistricting.

1Some countries consider total population, while others the number of voters. In some cases these
base numbers are further adjusted (e.g. with the area of the county) to compensate for other factors.
Most notably, rural areas are often treated better, in order to avoid a situation where the Members of
the Parliament represent only a geographically small part of the country.

2Ansolabehere and Palmer (2016) find that 20% of the congressional districts of the US remarkably
lack compactness, while The American Prospect reports that ”Close to a hundred congressional seats and
thousands of state legislative seats have been strategically drawn to be noncompetitive at the expense of
all other interests” (https://prospect.org/power/slaying-partisan-gerrymander/ [09/25/2019]).
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In addition to contiguity requirements, many states have a compactness clause in their

election law, some even prescribe basic compactness tests3. Still, most statutes are so

vague4, that it makes it very difficult to challenge the design of constituencies at court

based on compactness issues alone. Although many algorithms have been proposed to

mathematically define and measure compactness, it is not yet clear which approach is the

most relevant one.

The structure of the paper is the following. In Section 2, we describe the methodology,

we introduce the SRD method and give a detailed example. In Section 3, we analyse the

apportionment and districting problem through case studies. Finally, we conclude by

pointing out interesting future research directions.

2 SRD

Sum of ranking differences is a simple but effective statistical tool to rank and numerically

assess different solutions based on a reference (Héberger, 2010; Héberger and Kollár-

Hunek, 2011).

The input of an SRD analysis is an n × m matrix, where the first m − 1 columns

represent the different models (measurement techniques, Pareto-optimal outcomes), while

the rows represent the measured variables (properties). In the following we will refer to

the columns as solutions, and the rows as objects. The last column of the matrix has a

special role. It contains the benchmark values, called references, which form the basis of

comparison. From the input matrix we compose a ranking matrix by replacing each value

in a column – in order of magnitude – by its rank. Then SRD values are obtained by

computing the absolute differences between the column ranks and the reference ranking

and summing them up.

2.1 Reference values

SRD requires a reference value for each object. In some cases, justified reference values are

available (prescriptions, earlier measurements). In the absence of a known gold standard,

these reference values have to be extracted from the data. This step is called the data

3For a complete list, see http://redistricting.lls.edu/where-tablestate.php.
4For example, Idaho (72-1506/4) requires ”To the maximum extent possible, the plan should avoid

drawing districts that are oddly shaped.”
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fusion (Willett, 2013). Depending on the type of data, this can be done by a number of

ways. Here we list the most common methods.

• Average (arithmetic mean). Not only the random errors but the systematic ones

(biases) of different methods, and/or different measurement techniques follow nor-

mal distribution. If average is used in the data fusion act, the errors cancel each

other out supported by the maximum likelihood principle and empirical evidences

(Youden, 1997).

• Minimum/maximum. Error rates, residuals, misclassification rates, etc. often can be

grasped with the minimum values. Row maximum is a suitable gold standard for the

best classification rates, correlation coefficients etc. Row maxima and minima should

be chosen whenever objects are maximized or minimized under optimal conditions.

Such a selection of a benchmark is equivalent to defining the hypothetically “best”

method with the smallest error, best classification, etc.

• Median. A ”self-evident” substitute for the mean for asymmetric distributions, in

the presence of outliers.

2.2 SRD step by step

SRD is not solely a distance metric, but a composite procedure including data fusion

and validation steps. Here we describe how it works in details. In addition, SRD is

summarized on an animation procedure as a supplementary file in Bajusz et al. (2015).

An SRD toolbox in MS Excel macro format is available at: http://aki.ttk.mta.hu/srd.

i. Data fusion: The definition of a reference (benchmark) depends on the features of

the data set. The background philosophy is similar to proficiency testing (interlabo-

ratory comparisons), where laboratories and techniques are compared using Z-scores

with the assumption of normality (Youden, 1997). Reference is either a known gold

standard, or computed row-wise as the function of the first m− 1 column values.

ii. Converting the data matrix: We create a ranking matrix by replacing each value

in the column by its rank. That is, for each column (including the reference) take

the smallest value in the column and replace it with ’1’, take the second smallest

value and replace it with ’2’, and so on. Finally, the last remaining value, which was
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the largest of the original column values, is replaced by ’n’. Ties in column vectors

are resolved by giving the same rank to cells with the same value: the arithmetic

mean of the ranks. This tiebreaking mechanism is called fractional ranking and is

the standard in all statistical tests that deal with rankings.

iii. Computing the SRD values: We calculate the (absolute) ranking differences between

the reference and solution vector coordinates and sum them up. The SRD values

are, in fact, city block (Manhattan) distances, and they rank the solutions. The

smaller the SRD value the closer the solution is to the benchmark, i.e. the better.

The mutual proximity of SRD values indicates the specific grouping of variables.

iv. Validation: To remain comparable within various data sets (and different number

of rows) the normalized SRD values (scaled between 0 and 100) are calculated. The

permutation test (also called randomization test, denoted by CRRN = comparison

of ranks with random numbers) shows whether the rankings are comparable with

a ranking taken at random or they are different from it significantly. The second

validation option is called cross-validation, and assigns uncertainties to the SRD

values. Leave-one-out cross-validation is applied if the number of rows is less than

14. Leave-many-out cross-validation is applied for larger number of rows in the

input matrix.

2.3 Validation

SRD values follow a discrete distribution that depends on the number of rows. If n

exceeds 13 the distribution can be approximated with the normal distribution well5. By

convention we accept those solutions that are below 0.05, that is, below the 5% significance

threshold. Between 5-95% solutions are not distinguishable from random ranking, while

above 95% the solutions seem to rank the objects in a reverse order (with 5% significance).

The second validation step is cross-validation, where we repeatedly compute the SRD

values, while one seventh of the objects is left out. This can be done in blocks or by select-

ing random rows. If the number of objects is small only one row is left out in each step.

The median of the normalized SRD values are computed for each solution. The medians

are then compared with Wilcoxon matched pair signed rank test (henceforward Wilcoxon

5The difference is already negligible for n > 10, but for values n ≤ 13 the SRD distribution is provided
in the SRD toolbox (see the reference in Section 2.2.)
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test) to obtain a grouping of the solutions. The Wilcoxon test is a non-parametric sta-

tistical hypothesis test that can be used to compare two related samples. It is a common

alternative to the paired Student’s t-test (also known as ”t-test for dependent samples”)

when the sample size is small and the population cannot be assumed to be normally

distributed.

Cross-validation is similar to a Monte Carlo simulation where we randomly generate

data and test the different methods. Generating random data might be difficult as the

underlying distribution is often unknown, thus new, smaller datasets are produced by

sampling the rows. Note, that we did not make any assumption on the independence

of the objects. Indeed, SRD works fine even when there is some dependency between

the objects. Cross-validation, however, might contain some noise if the solutions are not

consistent. A solution is inconsistent if upon receiving a sub-set of the objects as input,

assigns different values for those objects, than what the solution prescribed for the same

sub-set for the original problem. This noise can be eliminated by computing the solutions

for the smaller problems during each step of the cross-validation.

2.4 Example

Now we demonstrate how SRD values are computed. Table 1 compares a couple of mobile

phones based on the technological benchmark values of six features (Battery, Performance,

Storage, etc.). In order to compare the features, the benchmark values are normalized.

Note that this example is illustrative – in the case studies, the objects we analyse are of

the same kind. Reference indicates the desired parameters. Phone A has a little more

battery life and better camera than Phone B, but inferior in other aspects. First, we

compute the ranks for both of the phones and the reference values. The smallest number

in the column of Phone A is the RAM, so it will be the first in the ranking. The second

smallest number in the column is the CPU performance, which therefore is ranked second,

and so on. Notice that in case of Phone A, display and storage tie for the 3rd and 4th

place, thus they each get an average rank of 3.5. Similarly, in case of Phone B, storage

and RAM ties for 4th and 5th place, so they get an average rank of 4.5.

After we computed the column ranks, we compare them with the reference ranking.

SRD values are obtained by first taking the absolute difference of a column ranking with

the reference ranking objectwise, then summing up the differences. In the example, Phone
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Features Phone A Rank Diff. Phone B Rank Diff. Reference Rank

Battery 0.814 5 0 0.793 3 2 0.750 5
Performance 0.661 2 1 0.700 1 0 0.594 1
Storage 0.681 3.5 0.5 0.844 4.5 0.5 0.719 4
Camera 1.000 6 0 0.975 6 0 1.000 6
RAM 0.587 1 2 0.844 4.5 1.5 0.703 3
Display 0.681 3.5 1.5 0.709 2 0 0.625 2

SRD values 5 4

Table 1: Calculation of the SRD values.

Samples SRDA SRDB Diff. Abs. Unsigned ranks Signed ranks.

Gr1 5 1 4 4 6 6
Gr2 3 4 -1 1 2 -2
Gr3 4 2 2 2 4.5 4.5
Gr4 5 4 1 1 2 2
Gr5 1 2 -1 1 2 -2
Gr6 2 4 -2 2 4.5 -4.5

Table 2: Cross-validation – the computation of the Wilcoxon test.

B is somewhat closer to the expectation, than Phone A.

Table 2 demonstrates the steps of the Wilcoxon test. Each row represent an SRD

computation for a sub-set of the objects. As n is small, leave-one-out cross-validation is

applied. That is, the Gr1 row was obtained by leaving out the first row, Gr2 by leaving out

the second, and so on. The Diffs. column shows the differences of SRD scores, while the

next column their absolute value. The latter is then used to create a ranking, tiebreaking

is again resolved by fractional ranking. Finally, we reapply the signs, that is, ranks that

originated from a negative difference are multiplied by (−1).

The last column is used to calculate the test statistics, W which is the minimum of two

values: the sum of positive ranks (W+) and the sum of negative ranks (W−). W follows

a specific distribution with an expected value of zero and which for large n converges to

normal distribution. In the example, W = min{6 + 4.5 + 2, 2 + 2 + 4.5}=8.5 under which

we reject the null-hypothesis and conclude that Phone B is closer to the reference.

The results are visualized in Figure 1. The boxplots represent the the first two column

of Table 2, that is, how the SRD scores ranged in the cross-validation. For comparability

reasons, SRD scores are normalized with the maximum possible difference, which is 12 for

5 objects. The whiskers indicate the minimum and maximum values, in case of Phone A

these are 0.833 = 1/12 and 0.4166 = 5/12. The boxes indicate the range between the first

and third quartile. Note that, since in this example we had only 6 data entries for each
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Figure 1: Cross Validation - ’<’ indicates that the solutions significantly differ (at the 5%
level) according to the Wilcoxon test.

solution, the 2nd and the 5th largest values were chosen as the first and the third quartile.

The Wilcoxon test tells us whether the difference between the boxplots is significant.

3 Case studies

In this section we demonstrate how SRD can be helpful in fair division and fair assessment

situations. To be conform with the terminology of the apportionment literature, in the

mathematical description we will use ’state’ instead of ’county’.

3.1 The Apportionment Problem

In the apportionment problem we have a finite number of seats, which have to be dis-

tributed among states with different populations. The problem is analogous to the dis-

tribution of seats between parties, which received different number of voters during the

elections. Brill et al. (2018) also showed that many apportionment methods can be formu-

lated as multiwinner approval rules. The US was the first modern country that adopted

sophisticated apportionment techniques. Balinski and Young (1975) give a comprehensive

historical overview of the theoretical and political debate that surrounded the introduc-

tion and evolution of apportionment methods in the US. Here we restrict ourselves to

discussing the main challenges and the proposed solutions that emerged in the past two
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centuries. First, we introduce some notation.

3.1.1 Mathematical framework

Let m denote the number of states in the country. An apportionment problem is a pair

(p, H) that consists of a vector p = (p1, p2, . . . , pm) of state populations, pi ∈ N+ and a

positive integer H ∈ N+ denoting the number of seats in the House. An apportionment

method determines the non-negative integers a1, a2, . . . , am with
∑m

i=1 ai = H, specifying

how many seats each of the states 1, 2, . . . ,m obtains. Formally, it is a function M

that assigns an allotment for each apportionment problem (p, H).6 Furthermore, let

P =
∑m

i=1 pi denote the total population of the country, and let A = P
H

be the average

size of a constituency. We refer to the fraction pi
P
H = pi

A
as the respective share of state i.

3.1.2 Properties of apportionment methods

Apportionment rules can be classified into three categories: largest remainder methods,

divisor methods and optimization methods. Each of the three approaches possess some

unique trait that the others do not.

One of the most basic properties of apportionment is the so-called Hare-quota: if exact

proportional allocation of the seats is not possible due to divisibility issues, it is reasonable

to find an allotment nearest to the respective shares of the states. Formally, each state

should be allotted at least as many seats as the lower integer part of its respective share

(lower quota). Conversely, no state should obtain more seats than the upper integer part

of its respective share (upper quota). When an apportionment method satisfies both

upper- and lower-quota, we say it has the Hare-quota property.

Largest remainder methods were designed to exhibit this property. The best known

such method is the Hamilton-method (sometimes also called Vinton-method), which first

assigns each state its lower quota, then the remaining seats are distributed one-by-one to

the states with the largest fractional parts of their respective shares. The Droop method

is calculated in a similar way, but the states’ respective share is obtained by dividing

the state populations with
(
1 + P

1+H

)
. This results in different lower quota, and different

fractional parts.

6Note that apportionment methods usually do not include any tiebreaking mechanism. A general
assumption in the literature is that all the pi values are different, which is virtually always true for real
instances.
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Hamilton-method, as all largest remainder methods, is vulnerable to monotonicity

issues, which was the main reason why it was abandoned by US legislators. The most

famous monotonicity paradox is the Alabama-paradox. Statisticians observed, that in-

creasing the House size sometimes result in less seats for some states. Another para-

doxical phenomenon is when a dynamically growing state is losing seats against a state

with smaller population growth (Tasnádi, 2008). Hamilton-method is neither House- nor

population-monotone. In addition, it also suffers from the New State and Elimination

paradoxes (see Balinski and Young (1982) and Jones et al. (2019) for further details).

Divisor methods are immune to monotonicity paradoxes. A divisor method is char-

acterized by a monotone increasing function f : N → R, the so-called divisor criterion.

The pi
f(s)

value is the rank-index or claim of state i when it has s seats. Seats are allo-

cated to the states one-by-one to the state with the highest claim until all the seats are

distributed. It is a general assumption that during the allotment no ties occur, that is all

the pi
f(s)

values are distinct. In this paper we analyzed the following divisor methods (EP

stands for Equal Proportions method – aliases are due to reinventions):

Adams method f(s) = s

Huntington-Hill/EP method f(s) =
√
s(s+ 1)

Sainte-Laguë/Webster method f(s) = s+ 1/2

Jefferson/D’Hondt method f(s) = s+ 1

Imperiali method f(s) = s+ 2

Macau method f(s) = 2s

We say that a divisor method is regular if the divisor criterion is bounded between s

and s + 1, that is s ≤ f(s) ≤ s + 1. Regular divisor methods have a particular feature:

Notice that the listed divisor criteria are pointwise increasing – the methods favour large

states over small states in the same order. That is, the Adams method favours small

states, while the Jefferson/D’Hondt is the most beneficial for large states (see also refs.

(Balinski and Young, 1982; Lauwers and Van Puyenbroeck, 2006; Marshall et al., 2002)).

Also regular divisor methods may violate either the lower- or the upper-quota, but never
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Methods Hare-quota Monotonicity properties VC’s recommendation

Largest remainder methods 3 7 7
Divisor methods 7 3 7
Optimization methods 7 7 3

Table 3: Properties of apportionment methods. 3 indicates that the solution satisfies,
while 7 indicates that it violates the given property.

both. Non-regular methods like the Imperiali- and Macau methods, may violate the

upper- and lower-quota at the same time.

Optimization methods compose the third branch of apportionment methods. The

Burt-Harris method (Burt and Harris, 1963; Edelman, 2006) minimizes the maximum

disparity in representation between any two states, while the Leximin method (Biró et al.,

2015), lexicographically minimizes the maximum departure, that is, the difference between

the population of any constituency and the average constituency size.

The Venice Commission, the advisory body of the Council of Europe in the field

of constitutional law, published The Code of Good Practice in Electoral Matters in 2002

(Venice Commission, 2002), which was consequently used in reviewing Albania’s and Esto-

nia’s electoral law in 2011 (Venice Commission and OSCE/ODIHR, 2011; OSCE/ODIHR,

2011). Instead of monotonicity properties this guidebook focuses on the equality of voting

power. Optimization methods are the only methods that are conform with the recom-

mendation of the Venice Commission.

There is a slight difference between the recommendation and the Hare-quota require-

ment. The Hare-quota specifies how many seats a state should receive at least and at

most. If a state gets less than its lower quota, then the allotment can be considered

somewhat unfair from the point of view of that particular state. The recommendation of

the Venice Commission is concerned rather with the individual voter. If the population

sizes of the constituencies differ too much so does the voters’ influence. In Europe, where

the countries consist of small and in some sense uniform counties the latter makes more

sense. Interestingly, the US Supreme Court also ruled that no deviation from equality is

too small to challenge as long as a plan with less inequality can be presented (see the case

Kirkpatrick v. Preisler (1969)). But this only applies within state. Across states there

seems to be no restrictions – this is why currently the voters of Rhode Island have 88%

more influence than the voters of Montana (Biró et al., 2015). Table 3 summarizes the

correspondence between apportionment methods and properties.
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County Population
Hamilton/

Droop Adams
HH/ SL/ Jefferson/

Imperiali Macau
Burt-

Leximin Reference
Vinton EP Webster D’Hondt Harris

Østfold 282 000 9 9 9 9 9 9 9 9 9 9 9.43
Akershus 566 399 19 20 18 19 19 20 21 10 18 19 18.95
Oslo 623 966 21 21 20 21 21 22 23 10 20 20 20.88
Hedmark 193 719 6 6 7 6 6 6 6 9 7 7 6.48
Oppland 187 254 6 6 6 6 6 6 6 9 6 6 6.26
Buskerud 269 003 9 9 9 9 9 9 9 9 9 9 9.00
Vestfold 238 748 8 8 8 8 8 8 8 9 8 8 7.99
Telemark 170 902 6 6 6 6 6 6 5 9 6 6 5.72
Aust-Agder 112 772 4 4 4 4 4 3 3 8 4 4 3.77
Vest-Agder 176 353 6 6 6 6 6 6 5 9 6 6 5.90
Rogaland 452 159 15 15 15 15 15 16 16 10 15 15 15.13
Hordaland 498 135 17 17 16 17 17 17 18 10 16 16 16.67
Sogn og

108 700 4 4 4 4 4 3 3 8 4 4 3.64
Fjordane
Møre og

259 404 9 9 9 9 9 9 9 9 9 9 8.68
Romsdal
Sør-

302 755 10 10 10 10 10 10 10 9 10 10 10.13
Trøndelag
Nord-

134 443 5 4 5 4 5 4 4 8 5 5 4.50
Trøndelag
Nordland 239 611 8 8 8 8 8 8 8 9 8 8 8.02
Troms 160 418 5 5 6 5 5 5 5 8 6 5 5.37
Finnmark 74 534 2 2 3 3 2 2 1 7 3 3 2.49

Table 4: Comparison of apportionment methods on Norwegian data. Abbreviations: HH:
Huntington-Hill, EP: Equal Proportions, SL: Sainte-Laguë

3.1.3 Case study of Norway

The choice of apportionment method often depend on cultural and historical character-

istics of the country. Even if the decision maker has a clear preference over the three

properties (cf. Table 3), each class contains several methods to choose from. Which

one performs best on the given data is still up to debate. Since apportionment is also

used to distribute seats between parties after the elections, the apportionment method

is often challenged in countries with a fragmented parliament. To evaluate the different

candidates, malapportionment measures have been proposed (Benoit, 2000; Koppel and

Diskin, 2008; Samuels and Snyder, 2001; Schubert and Press, 1964; Wada and Kamahara,

2018). SRD follows this literature and offers yet another way to help this difficult choice.

In apportionment, there is a natural candidate for reference point: the respective

shares of the states (note that these are non-integer numbers). To demonstrate the effec-

tiveness of SRD we use population data from Norway7. Table 4 shows the sizes of counties,

their respective shares and the apportionments proposed by the different methods.

The data are typical in the sense, that the solutions prescribed by the different methods

are very similar8. Given that the apportionment may significantly affect the outcome

of the election even small differences matter. The computation of the SRD values are

displayed in Table 7, the results of the CRRN analysis is shown in Figure 2.

7In Norway, apportionment is based on the number of voters adjusted by the size of the county. Here
we use the raw population data (Sta, 2013) as after adjustment most of the solutions coincide, hence
there is no point in comparison.

8This is quite common in apportionment, see other examples in refs. (Biró et al., 2015) or (Marshall
et al., 2002).
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Figure 2: Comparison of ranks with random numbers. All (normalized) SRD values fall
outside the 5% threshold (XX1: 5% threshold, Med: Median, XX19: 95% threshold).
The black curve is a continuous approximation of the cumulative distribution function of
the random SRD values.

With the exception of the exotic Macau method all apportionment methods perform

well. Somewhat unexpectedly, the Imperiali method, a non-regular divisor method, shares

first place with the Leximin method. This is even more perplexing considering that

the Imperiali method does not satisfy exact quota. That is, the Imperial method may

not produce a perfectly proportional allocation even if such exists. The reason becomes

clear when we consider how the Imperiali method handles the quotas. Oslo the largest

administrative region gets more seats than its upper quota, while Finnmark, the smallest

county gets less than its lower quota. Note, that SRD is insensitive for this kind of bias, the

ranking does not change if the largest receives more, or if the smallest obtains less seats.

Although the Imperiali seems to favor large states even more than the Jefferson/D’Hondt

method, it treats the middle more fairly.

Although the Macau method is inferior compared to the other methods, it still falls

outside of the 5% threshold, which means that it is better than a random ranking. Cross-

validation also reveals how the solutions are organized (see Fig. 3). According to the

Wilcoxon test, the Leximin and the Imperiali methods perform significantly better than

the Adams or Jefferson/D’Hondt method. The latter two is significantly better, than the

EP, Webster and Hamilton methods, while the Macau method lags far behind.
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Figure 3: Cross Validation - The Wilcoxon test arranges the solutions into four equivalence
classes. ’∼’ indicates that there is no significant difference between the solutions, while
’<’ indicates that the solutions significantly differ (at the 5% level).

Note that, in the Apportionment problem the rows of the data matrix are dependent in

the sense that the total allotment should be equal to the House size. Thus, cross-validation

might contain some noise for solutions that are not consistent. Divisor methods are not

affected since they are coherent9 (Palomares et al., 2016), meaning they assign the same

allotment for a sub-set of the objects. This might not be the case for largest remainder

methods and optimization methods. Overall the result should be robust as errors are

scarce and cancel out, but for a precise ranking the solutions should be recalculated in

each step during the cross-validation.

3.2 Case study No 2: Districting

Ever since US Senator Elbridge Gerry redesigned Essex County’s state senate districts

in 1812 to help his re-election, districting is under the spotlight of public attention and

there is a continuous academic debate on how legislators ought to do it and how the court

should deal with the problematic cases. Figure 4 demonstrates how a politically balanced

9In Social Choice literature, consistency is the most common expression used to describe this property
(Thomson, 2012). In apportionment, the terminology is less consistent and coherence, consistency and
uniformity have been equally used.
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Figure 4: Politically competitive districts (left) vs. gerrymandered districts (right)

state can be apportioned to favour one of the parties. Although, here compactness is

not an issue, in real life voters are distributed much more erratically and gerrymandered

districts tend to have a weird shape.

One of the main questions of districting is whether to construct politically competitive

districts, where voters have diverse interests, or to promote proportionality by creating ho-

mogeneous districts for all numerically significant sets of political opinions in the electorate

(Stern, 1974). The picture is further complicated by the fact that residential patterns and

human geography may cause ’unintentional gerrymandering’, whereby one party’s voters

are more geographically clustered than those of the opposing party (Chen and Rodden,

2013). A more recent discussion focuses on how district level competitiveness relates to

the marginal benefit of parties’ efforts to mobilize voters, and how competitiveness can

be measured (Blais and Lago, 2009; Cox et al., 2019).

Perhaps the most controversial case in the US is the ’earmuffs’ of Chicago, the 4th

congressional district of Illinois (Fig. 5, left). The constituency which consists of mainly

latino voters practically enfolds the 7th district (Fig. 5, right), a predominantly black

community. The thin line that connects the northern and souther block and ensures the

contiguity of the district is an uninhabited highway. The reason (or rather the excuse) of

the design is to make sure that both the latino and the black communities are represented

in the congress. In reality, this is nothing more than segregation by race, that ignores all

cultural aspects: the neighborhood to the north is primarily Puerto Rican, and the one

to the south is primarily Mexican-American.

Stern (1974) warns, that single-member districts drawn to guarantee minority repre-

sentation create several problems (e.g. the group representing the majority interest in the

given district loses incentive for nominating competitive candidates). On the other hand,

Gilligan and Matsusaka (2006) argue that districting plans that maximize the homogene-
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Figure 5: The 4th (left) and 7th (right) congressional districts of Illinois, 108th Congress
of the United States.

ity of preferences within each district eliminate policy bias between the median voter and

the elected legislature.

It is a delicate issue whether the shapes of the 4th and 7th district of Illinois are

justified or not, and discussing it would bring us far from the subject of this paper. Yet,

these constituencies give us an excellent idea how hand-drawn districts look like where

compactness of the constituency was disregarded.

3.2.1 Compactness measures

Compactness has been strongly advocated by legal and political experts as a remedy for

partisan gerrymandering (Stern, 1974; Polsby and Popper, 1991; Chambers and Miller,

2013). A related stream of literature focuses on measuring redistricting changes, see e.g.

(Crespin, 2005) and the references therein.

There is an intensive debate on what and how compactness measures need to test. For

instance, the Iowa Code (2018) prescribes that both the length-width difference and the

perimeter of a district should be minimal and the total length-width difference and the

total perimeter distance computed for all individual districts in a plan can be compared

to an alternative districting plan.

In contrast, many compactness measures compare the shape of a constituency to an

ideal formation10: a circle or rectangle. Here we review some of the classical measures as

well as a novel method recommended recently by Nagy and Szakál (2018).

The Polsby-Popper test (Polsby and Popper, 1991) compares the area of the district

10Not all compactness measures assume an ideal shape. Chambers and Miller (2010) suggest a path-
based measure without specifying an ideal form.
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to the area of a circle with the same perimeter as the district. The Reock test (Reock,

1961) compares the area of the district to the area of the smallest circle within which the

district will fit. The Lee-Sallee test (Lee and Sallee, 1970) again considers a circle with

the same area as the district and places it in such way that the center of mass of the

two shapes coincides, then takes the ratio of the area of their intersection and the area of

their union. The Moment Invariants comes from image processing and also considers the

circle the most compact shape. The Length-to-width test takes the (absolute) difference

between the distances of the Westernmost and Easternmost points and the Southernmost

and Northernmost points of the district (Harris, 1964).

Formally, let D represent the set of geometric shapes corresponding to the constituen-

cies. We denote the area of a constituency D ∈ D as A(D), while let P (D) be its

perimeter. Furthermore, let C ′ be the smallest circumscribed circle of D, and C ′′ a circle

such that A(C ′) = A(D), and the center of mass for C ′′ and D coincides.

Polsby-Popper CPP (D) =
4π · A(D)

(P (D))2

Reock CR(D) =
A(D)

A(C ′)

Lee-Sallee CLS(D) =
A(D ∩ C ′′)
A(D ∪ C ′′)

Moment Invariants Cβ
MI(D) =


(A(D))β+1

πβ(β+1)
∫ ∫

D(x2+y2)βdxdy
, if β > 0

πβ(β+1)
∫ ∫

D(x2+y2)βdxdy

(A(D))β+1 , if β ∈ (−1, 0).

All the above measures range between 0 and 1, and CPP (D) = CR(D) = CLS(D) =

Cβ
MI(D) = 1 ⇔ D is a circle. To make the Length-to-width measure comparable to the

other measures we transform the values into the [0, 1] interval. Let LW (D) stand for

the length-width difference of district D, then we standardize the data with the following

formula

Length-to-width CLW (D) = 1− LW (D)

maxD′∈D{LW (D′)}
.
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Districts
Mom. Inv. Mom. Inv. Mom. Inv. Lee-

Reock
Polsby- Length-to- Reference

(β = −0.5) (β = 1) (β = 2) Sallee Popper width (Avg)

Arkansas 1st 0.936 0.810 0.584 0.721 0.396 0.144 0.924 0.645
Arkansas 2nd 0.924 0.640 0.301 0.582 0.311 0.221 0.693 0.524
Arkansas 3rd 0.940 0.698 0.365 0.619 0.328 0.327 0.824 0.586
Arkansas 4th 0.947 0.753 0.474 0.617 0.394 0.260 0.292 0.534
Iowa 1st 0.944 0.790 0.527 0.655 0.388 0.403 0.980 0.670
Iowa 2nd 0.895 0.504 0.170 0.483 0.208 0.255 0.720 0.462
Iowa 3rd 0.881 0.544 0.224 0.445 0.254 0.302 0.025 0.382
Iowa 4th 0.948 0.758 0.483 0.610 0.428 0.468 0.549 0.606
Iowa 5th 0.945 0.729 0.399 0.654 0.273 0.323 0.418 0.534
Kansas 1st 0.950 0.734 0.430 0.790 0.387 0.431 0.000 0.532
Kansas 2nd 0.854 0.577 0.298 0.439 0.355 0.230 0.353 0.443
Kansas 3rd 0.910 0.743 0.472 0.619 0.389 0.355 0.942 0.633
Kansas 4th 0.923 0.655 0.332 0.549 0.346 0.467 0.343 0.516

Table 5: Compactness measures for various congressional districts of the 107th Congress
of the United States (Source: (Nagy and Szakál, 2018) and own compilation)

3.2.2 Comparing compactness measures

To test how compactness measures perform on real data, we use the dataset provided in

(Nagy and Szakál, 2018), where compactness of the congressional districts of Arkansas,

Iowa and Kansas are compared (Table 5 and Fig. 6). Unlike to the apportionment prob-

lem, in districting there is no natural reference point. Since the ideal shape, a circle, has

a compactness measure of 1, and generally the greater the value the more compact the

shape is, the best (maximum) or worst (minimum) values could be potential reference

points. Notice however, that although all compactness measures map into [0, 1], some of

them have a preferred subinterval. For instance, the Lee-Sallee index ranges between 0.4

and 0.8, while the Polsby-Popper between 0.1 and 0.5. Choosing the maximum values

would effectively result in setting the Moment Invariants with (β = −0.5) as the reference.

The minimum values are no better as they almost always coincide with the Polsby-Popper

scores. Hence, in this case, the minimum or maximum values do not allow the objective

comparison of these measures. Instead we opt for a third candidate and set the average

as the reference point.

Theoretical and practical arguments equally support this choice. Firstly, if we think

of the compactness measures as tests that estimate compactness with some error, then by

taking the average these errors cancel out by the maximum likelihood principle. The fact

that the measures capture completely different aspects of compactness actually strengthen

this point, as it is less likely that the average is affected by some kind of systematic bias.

Secondly, if a policy maker has to decide which measure to impose as a legal requirement,

she might prefer to choose something close to the average as she doesn’t want her decision

to be challenged.

Table 8 displays the computation of SRD values, Figure 7 shows the result of CRRN
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Figure 6: Congressional districts of Arkansas, Iowa and Kansas, 107th Congress. (Source:
US Census Bureau (2000))

test. There are a couple of interesting observations to make. In contrast to apportionment,

here we see great distances between the SRD values. Moreover, even the best SRD scores

are not that good - there is room for improvement. The Moment Invariant measures

obtained some of the best and worst SRD scores, which indicates that the parameter

of the function should be chosen carefully. Nagy and Szakál (2018) suspect, based on

empirical observations, that the most effective interval for the β parameter is [1, 3]. Indeed

β = −0.5 is second worst among the solutions and just barely falls outside the error limit.

Finally, the most apparent feature is that the Polsby-Popper test falls within the error

limit, that is, it cannot be distinguished from random ranking.

Cross-validation (Fig. 8) confirms that there is no significant difference between Mo-

ment Invariants with β = 1 and β = 2 and the Lee-Sallee index. The triumvirate is

followed by the Length-to-width test, then by the Reock test and Moment Invariant with

β = −0.5, which again do not differ significantly. Finally comes, lagging somewhat be-

hind, the Polsby-Popper test. In this case, objects are independent, no consistency-issues

arise.

Arguably, measuring compactness is a complicated, multi-dimensional problem. The

bad SRD score of the Polsby-Popper test might only indicate that this test measures a

different aspect of the problem. On the other hand, this can be said basically about every

other tests. Table 6 summarizes the relative distances of the solutions. One-by-one, we

fixed each solution as the reference and computed the distances in SRD scores for each
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Figure 7: Comparison of ranks with random numbers (cf. Fig 2). Great distance between
the SRD values.

other solution. The Polsby-Popper test, as expected, is quite far away from the other

measures, but so is the Length-to-width test, and none of them seems to be particularly

close to each other (with the exception of the Moment Invariants with β = 1 and β = 2).

If we think of the average value as a collective wisdom that reflects the judgment of all

the measures, then one may be inclined to say that the Polsby-Popper test is unsuitable

for measuring compactness of constituencies. We do not wish to formulate such a strong

claim. A sample of 13 districts is hardly big enough to make such a generalization. Further

analysis is needed to resolve this issue.

Nevertheless, this result has a practical consequence. Policy makers that seek to reform

districting law and impose a compactness requirement might be less inclined to propose

the Polsby-Popper test. Since the test’s measurements are off from the average, its results

can be easily challenged by an adverse party armed with a different measure.

4 Summary and conclusion

Sum of Ranking Differences is a novel statistical method, which can be valuable for testing

competing solutions in Political Science and Social Choice. We provided two case studies

to demonstrate its effectiveness in fair division and fair assessment problems. For the

21



<

<

<

Figure 8: Cross Validation. ’∼’ indicates that there is no significant difference between
the solutions, while ’<’ indicates that the solutions significantly differ.

former we looked at the apportionment of the Norwegian parliamentary seats. For the

latter we considered the compactness of the constituencies of three US states.

In the apportionment problem, all the methods under examination – with the excep-

tion of the Macau-method – performed very well. Although the Leximin method fit the

data the best, it was only slightly better than classical solution methods. Overall, opti-

mization methods produced better SRD values than largest remainder methods. However,

to announce a clear ranking of the methods more tests are needed. Interestingly, the non-

regular Imperiali method performed just as well as the Leximin method. The likely cause

Table 6: The relative heat map shows the distances between solutions measured in SRD
score, when the reference is set one-by-one as one of the solutions.
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is, that the Imperiali method may violate both the upper- and lower quota in the same

time, and SRD does not penalize this behavior. Still, the outstanding SRD score indicates

that the Imperiali method is not just another exotic apportionment method, but a viable

alternative to the classical rules.

In the districting problem, the SRD values covered a far greater range. A novel

parametric method, the Moment Invariants performed very well compared to the classical

compactness measures when the parameter was chosen carefully, that is for β = 1 and

β = 2. However, for β = −0.5 the method fares poorly. The SRD score of the Polsby-

Popper test was no better than an SRD value of a random ranking, which suggests that the

test measures a different dimension of compactness. Further analysis is needed to decide

whether the test is suitable for measuring the compactness of constituencies. In reality,

the reliability of compactness measures are limited as they do not take into account the

natural boundaries (e.g. coastlines). This can be avoided by looking at the redistricting

problem on a higher level and compare total compactness of competing redistricting plans.

In summary, SRD seems to be an excellent tool in comparing solutions in various fields

of applied science. Initial steps has been already taken to provide theoretical foundations

for its success. Lourenço and Lebensztajn (2018) showed that SRD provides a smaller set

of optimal solutions from among the possible groupings of similar solutions of the Pareto

front. An axiomatic analysis of SRD would further strengthen its reliability.

Acknowledgements

This research was supported by the Higher Education Institutional Excellence Program

of the Ministry for Innovation and Technology in the framework of the ”Financial and

Public Services” research project (reference number: NKFIH-1163-10/2019) at Corvinus

University of Budapest. The authors acknowledge the support of Hungarian National

Research, Development and Innovation Office, grant numbers K124550 (B. R. Sziklai),

K119269 and KH 17 125608. (K. Héberger)
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5 Appendix

5.1 Computation of SRD values in the apportionment problem

County Hamilton Diff. Droop Diff. Adams Diff. EP Diff. Webster Diff.
Reference
ranking

Finnmark 1 0 1 0 1 0 1 0 1 0 1
Sogn og Fjordane 2.5 0.5 3 1 2.5 0.5 3 1 2.5 0.5 2
Aust-Agder 2.5 0.5 3 0 2.5 0.5 3 0 2.5 0.5 3
Nord-Trøndelag 4.5 0.5 3 1 4 0 3 1 4.5 0.5 4
Troms 4.5 0.5 5 0 6.5 1.5 5 0 4.5 0.5 5
Telemark 7.5 1.5 7.5 1.5 6.5 0.5 7.5 1.5 7.5 1.5 6
Vest-Agder 7.5 0.5 7.5 0.5 6.5 0.5 7.5 0.5 7.5 0.5 7
Oppland 7.5 0.5 7.5 0.5 6.5 1.5 7.5 0.5 7.5 0.5 8
Hedmark 7.5 1.5 7.5 1.5 9 0 7.5 1.5 7.5 1.5 9
Vestfold 10.5 0.5 10.5 0.5 10.5 0.5 10.5 0.5 10.5 0.5 10
Nordland 10.5 0.5 10.5 0.5 10.5 0.5 10.5 0.5 10.5 0.5 11
Møre og Romsdal 13 1 13 1 13 1 13 1 13 1 12
Buskerud 13 0 13 0 13 0 13 0 13 0 13
Østfold 13 1 13 1 13 1 13 1 13 1 14
Sør-Trøndelag 15 0 15 0 15 0 15 0 15 0 15
Rogaland 16 0 16 0 16 0 16 0 16 0 16
Hordaland 17 0 17 0 17 0 17 0 17 0 17
Akershus 18 0 18 0 18 0 18 0 18 0 18
Oslo 19 0 19 0 19 0 19 0 19 0 19

SRD values 9 9 8 9 9

County Jefferson Diff. Imperiali Diff. Macau Diff.
Burt-

Diff. Leximin Diff.
Reference

Harris ranking

Finnmark 1 0 1 0 1 0 1 0 1 0 1
Sogn og Fjordane 2.5 0.5 2.5 0.5 3.5 1.5 2.5 0.5 2.5 0.5 2
Aust-Agder 2.5 0.5 2.5 0.5 3.5 0.5 2.5 0.5 2.5 0.5 3
Nord-Trøndelag 4 0 4 0 3.5 0.5 4 0 4.5 0.5 4
Troms 5 0 6 1 3.5 1.5 6.5 1.5 4.5 0.5 5
Telemark 7.5 1.5 6 0 10.5 4.5 6.5 0.5 7 1 6
Vest-Agder 7.5 0.5 6 1 10.5 3.5 6.5 0.5 7 0 7
Oppland 7.5 0.5 8.5 0.5 10.5 2.5 6.5 1.5 7 1 8
Hedmark 7.5 1.5 8.5 0.5 10.5 1.5 9 0 9 0 9
Vestfold 10.5 0.5 10.5 0.5 10.5 0.5 10.5 0.5 10.5 0.5 10
Nordland 10.5 0.5 10.5 0.5 10.5 0.5 10.5 0.5 10.5 0.5 11
Møre og Romsdal 13 1 13 1 10.5 1.5 13 1 13 1 12
Buskerud 13 0 13 0 10.5 2.5 13 0 13 0 13
Østfold 13 1 13 1 10.5 3.5 13 1 13 1 14
Sør-Trøndelag 15 0 15 0 10.5 4.5 15 0 15 0 15
Rogaland 16 0 16 0 17.5 1.5 16 0 16 0 16
Hordaland 17 0 17 0 17.5 0.5 17 0 17 0 17
Akershus 18 0 18 0 17.5 0.5 18 0 18 0 18
Oslo 19 0 19 0 17.5 1.5 19 0 19 0 19

SRD values 8 7 33 8 7

Table 7: Rankings induced by the various solutions and difference from the reference
ranking
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5.2 Computation of SRD values in the districting problem

Districts
Mom. Inv.

Diff.
Mom. Inv.

Diff.
Mom. Inv.

Diff. Lee-Sallee Diff.
Reference

(β = −0.5) (β = 1) (β = 2) ranking

Iowa 3rd 2 1 2 1 2 1 2 1 1
Kansas 2nd 1 1 3 1 3 1 1 1 2
Iowa 2nd 3 0 1 2 1 2 3 0 3
Kansas 4th 5 1 5 1 5 1 4 0 4
Arkansas 2nd 6 1 4 1 4 1 5 0 5
Kansas 1st 13 7 8 2 8 2 13 7 6
Arkansas 4th 11 4 10 3 10 3 7 0 7
Iowa 5th 10 2 7 1 7 1 10 2 8
Arkansas 3rd 8 1 6 3 6 3 8 1 9
Iowa 4th 12 2 11 1 11 1 6 4 10
Kansas 3rd 4 7 9 2 9 2 9 2 11
Arkansas 1st 7 5 13 1 13 1 12 0 12
Iowa 1st 9 4 12 1 12 1 11 2 13

SRD value 18 10 10 10

Reock Diff. Polsby-Popper Diff.
Length-to-

Diff.
Reference

width ranking

Iowa 3rd 2 1 6 5 2 1 1
Kansas 2nd 7 5 3 1 5 3 2
Iowa 2nd 1 2 4 1 9 6 3
Kansas 4th 6 2 12 8 4 0 4
Arkansas 2nd 4 1 2 3 8 3 5
Kansas 1st 8 2 11 5 1 5 6
Arkansas 4th 11 4 5 2 3 4 7
Iowa 5th 3 5 7 1 6 2 8
Arkansas 3rd 5 4 8 1 10 1 9
Iowa 4th 13 3 13 3 7 3 10
Kansas 3rd 10 1 9 2 12 1 11
Arkansas 1st 12 0 1 11 11 1 12
Iowa 1st 9 4 10 3 13 0 13

SRD value 17 23 15

Table 8: Rankings induced by the various solutions and difference from the reference
ranking
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