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ABSTRACT

In the stable marriage problem, a set of men and a set of women are given, each of
whom has a strictly ordered preference list over the acceptable agents in the opposite
class. A matching is called stable if it is not blocked by any pair of agents, who
mutually prefer each other to their respective partner. Ties in the preferences allow
for three different definitions for a stable matching: weak, strong and super-stability.
Besides this, acceptable pairs in the instance can be restricted in their ability of
blocking a matching or being part of it, which again generates three categories of
restrictions on acceptable pairs. Forced pairs must be in a stable matching, forbidden

pairs must not appear in it, and lastly, free pairs cannot block any matching.

Our computational complexity study targets the existence of a stable solution for
each of the three stability definitions, in the presence of each of the three types of
restricted pairs. We solve all cases that were still open. As a byproduct, we also derive
that the maximum size weakly stable matching problem is hard even in very dense

graphs, which may be of independent interest.
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A stabil parositas probléma gyengén rendezett listakkal és
korlatozott élekkel

CSEH AGNES — KLAUS HEEGER

OSSZEFOGLALO

A Kklasszikus stabil parositas probléméaban nék és férfiak egy halmaza adott. Mindenki
felallit egy szigortan rendezett preferencialistat az ellenkezli nem néhany tagjarol.
Akkor neveziink egy parositast stabilnak, ha azt nem blokkolja egyetlen par sem. Egy
par akkor blokkolja a parositast, ha mindkét tagja magasabban rangsorolja egymast,
mint a parositdsban hozzajuk rendelt személyeket. Ha a preferencialistik nem
szigoruan, hanem gyengén rendezettek, akkor haromféle stabilitasi definicioval
dolgozhatunk: gyenge, erGs és szuper-stabilitissal. Egyes parok lehetnek
korlatozottak is: a kotelez6 parokat muszaj, a tiltott parokat pedig tilos tartalmaznia a
keresett stabil parositdsnak. A szabad élek lehetnek parositas tagjai, de nem
blokkolhatnak parositast.

Cikkiinkben bonyolultsagelméleti szempontb6l tanulmanyozzuk a stabil megoldas
létezését mindharom stabilitdsi definiciéra, mindharom féle korlatozott él
jelenlétében. Minden eddig nyitott kérdést megvalaszolunk. Az is kideriil, hogy a
maximalis méretli gyengén stabil parositas probléméaja még nagyon siirti grafokban is
NP-teljes.

JEL: C63, C78
Kulcsszavak: stabil parositas, korlatozott élek, bonyolultsag
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Abstract

In the stable marriage problem, a set of men and a set of women are given,
each of whom has a strictly ordered preference list over the acceptable agents
in the opposite class. A matching is called stable if it is not blocked by any
pair of agents, who mutually prefer each other to their respective partner.
Ties in the preferences allow for three different definitions for a stable match-
ing: weak, strong and super-stability. Besides this, acceptable pairs in the
instance can be restricted in their ability of blocking a matching or being
part of it, which again generates three categories of restrictions on accept-
able pairs. Forced pairs must be in a stable matching, forbidden pairs must
not appear in it, and lastly, free pairs cannot block any matching.

Our computational complexity study targets the existence of a stable
solution for each of the three stability definitions, in the presence of each of
the three types of restricted pairs. We solve all cases that were still open. As
a byproduct, we also derive that the maximum size weakly stable matching
problem is hard even in very dense graphs, which may be of independent
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1. Introduction

In the classical stable marriage problem (sm) [14], a bipartite graph is
given, where one side symbolizes a set of men U, while the other side sym-
bolizes a set of women W. Man u and woman w are connected by the edge uw
if they find one another mutually acceptable. In the most basic setting, each
participant provides a strictly ordered preference list of the acceptable agents
of the opposite gender. An edge uw blocks matching M if it is not in M, but
each of u and w is either unmatched or prefers the other to their respective
partner in M. A stable matching is a matching not blocked by any edge.
From the seminal paper of Gale and Shapley [14], we know that the exis-
tence of such a stable solution is guaranteed and a stable matching can be
found in linear time.

Several real-world applications [6] require a relaxation of the strict or-
der to weak order, or, in other words, preference lists with ties, leading to
the stable marriage problem with ties (SMT) [16, 18, 24]. When ties occur,
the definition of a blocking edge needs to be revisited. In the literature,
three intuitive definitions are used, namely weakly, strongly and super-stable
matchings [16]. According to weak stability, a matching is weakly blocked
by an edge uw if agents u and w both strictly prefer one another to their
partners in the matching. A strongly blocking edge is preferred strictly by
one end vertex, whereas it is not strictly worse than the matching edge at the
other end vertex. A super-blocking edge is at least as good as the matching
edge for both end vertices in the super-stable case. Super-stable matchings
are strongly stable and strongly stable matchings are weakly stable by def-
inition, because weakly blocking edges are strongly blocking, and strongly
blocking edges are super-blocking at the same time.

Weak and strong stability serve as the goal to achieve in most applica-
tions, such as college admission programs. In most countries, colleges are not
required to rank all applicants in a strict order of preference, hence large ties
occur in their lists. According to the equal treatment policy used in Chile
and Hungary for example, it may not occur that a student is rejected from a
college preferred by her, even though other students with the same score are
admitted [7, 29]. Other countries, such as Ireland [9], break ties with lottery,
which gives way to a weakly stable solution according to the original, weak
order. Super-stable matchings can represent safe solutions if agents provide
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ww must be in M  ww can be in M  ww must not be in M

uw can block M forced unrestricted forbidden
uw cannot block M forced free irrelevant

Table 1: The three types of restricted edges are marked with bold letters. The columns
tells edge uww’s role regarding being in a matching, while the rows split cases based on
uw’s ability to block a matching.

uncertain preferences that mask an underlying strict order [30, 5, 4]. If two
edges are in the same tie because of incomplete information derived from the
agent, then super-stable matchings form the set of matchings that guarantee
stability for all possible true preferences.

Another classical direction of research is to distinguish some of the edges
based on their ability to be part of or to block a matching. Table 1 provides
a structured overview of the three sorts of restricted edges that have been
defined in earlier papers [20, 11, 12, 3, 22, 10]. The mechanism designer can
specify three sets of restricted edges: forced edges must be in the output
matching, forbidden edges must not appear in it, and finally, free edges
cannot block the matching, regardless of the preference ordering.

The market designer’s motivation behind forced and forbidden edges is
clear. By adding these restricted edges to the instance, one can shrink the
set of stable solutions to the matchings that contain a particularly important
or avoid an unwelcome partnership between agents. Free edges model a less
intuitive, yet ubiquitous scenario in applications [3]. Agents are often not
aware of the preferences of others, not even once the matching has been
specified. This typically occurs in very large markets, such as job markets [2],
or if the preferences are calculated rather than just provided by the agents,
such as in medical [8] and social markets [1]. Agents who cannot exchange
their preferences are connected via a free edge. If a matching is only blocked
by free edges, then no pair of agents can undermine the stability of it.

In this paper, we combine weakly ordered lists and restricted edges, and
determine the computational complexity of finding a stable matching in all
cases not solved yet.

1.1. Literature review

We first focus on the known results for the SMT problem without restricted
edges, and then switch to the SM problem with edge restrictions. Finally, we
list all progress up to our paper in SMT with restricted edges.
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Ties. If all edges are unrestricted, a weakly stable matching always exists,
because generating any linear extension to each preference list results in a
classical sM instance, which admits a solution [14]. This solution remains
stable in the original instance as well. On the other hand, strong and super-
stable matchings are not guaranteed to exist. However, there are polynomial-
time algorithms to output a strongly/super-stable matching or a proof for
its nonexistence [16, 25].

Restricted edges. Dias et al. [11] showed that the problem of finding a stable
matching in a SM instance with forced and forbidden edges or reporting that
none exists is solvable in O(m) time, where m is the number of edges in
the instance. Approximation algorithms for instances not admitting any
stable matching including all forced and avoiding all forbidden edges were
studied in [10]. The existence of free edges can only enlarge the set of stable
solutions, thus a stable matching with free edges always exists. However, in
the presence of free edges, a maximum-cardinality stable matching is NP-
hard to find [3]. Kwanashie [22, Sections 4 and 5] performed an exhaustive
study on various stable matching problems with free edges. The term “stable
with free edges” [8, 13] is equivalent to the adjective “socially stable” [3, 22]
for a matching.

Ties and restricted edges. Table 2 illustrates the known and our new re-
sults on problems that arise when ties and restricted edges are combined
in an instance. Weakly stable matchings in the presence of forbidden edges
were studied by Scott [32], where the author shows that deciding whether a
matching exists avoiding the set of forbidden edges is NP-complete. A simi-
lar hardness result was derived by Manlove et al. [26] for the case of forced
edges, even if the instance has a single forced edge. Forced and forbidden
edges in super-stable matchings were studied by Fleiner et al. [12], who gave a
polynomial-time algorithm to decide whether a stable solution exists. Strong
stability in the presence of forced and forbidden edges is covered by Kun-
ysz [21], who gave a polynomial-time algorithm for the weighted strongly
stable matching problem with non-negative edge weights. Since strongly sta-
ble matchings are always of the same cardinality [23, 18], a stable solution
or a proof for its nonexistence can be found via setting the edge weights to
0 for forbidden edges, 2 for forced edges, and 1 for unrestricted edges.
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Existence weak strong super
forbidden | NP-complete [32] O(nm) [21] O(m) [12]
forced NP-complete even if |Q| = 1 [26] O(nm) [21] O(m) [12]
free always exists

Table 2: Previous and our results summarized in a table. The contribution of this paper
is marked by bold gray font. The instance has n vertices, m edges, |P| forbidden edges,
and |Q)| forced edges.

1.2. Our contributions

In Section 3 we prove a stronger result than the hardness proof in [32]
delivers: we show that finding a weakly stable matching in the presence of
forbidden edges is NP-complete even if the instance has a single forbidden
edge.

As a byproduct, we gain insight into the well-known maximum size weakly
stable matching problem (without any edge restriction). This problem is
known to be NP-complete [19, 26|, even if preference lists are of length at most
three [17, 27]. On the other hand, if the graph is complete, a complete weakly
stable matching is guaranteed to exist. It turns out that this completeness
is absolutely crucial to keep the problem tractable: as we show here, if the
graph is a complete bipartite graph missing exactly one edge, then deciding
whether a perfect weakly stable matching exists is NP-complete.

We turn to the problem of free edges under strong and super-stability in
Section 4. We show that deciding whether a strongly /super-stable matching
exists when free edges occur in the instance is NP-complete. This hard-
ness is in sharp contrast to the polynomial-time algorithms for the weighted
strongly/ super-stable matching problems. Afterwards, we show that decid-
ing the existence of a strongly or super-stable matching in an instance with
free edges is fixed-parameter tractable parameterized by the number of free
edges.

2. Preliminaries

The input of the stable marriage problem with ties consists of a bipartite
graph G = (UUW, E) and for each v € UU W, a weakly ordered preference
list O, of the edges incident to v. We denote the number of vertices in G
by n, while m stands for the number of edges. An edge connecting vertices u
and w is denoted by uw. We say that the preference lists in an instance are
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derived from a master list if there is a weak order O of U UW so that each O,
where v € U U W can be obtained by deleting entries from O.

The set of restricted edges consists of the set of forbidden edges P, the set
of forced edges (), and the set of free edges F. These three sets are disjoint.

Definition 1. A matching M is weakly /strongly /super-stable with restricted
edgesets P,Q,and F, if MNP =0, Q C M, and the set of edges blocking M
in a weakly/strongly/super sense is a subset of F.

3. Weak stability

In Theorem 1 we present a hardness proof for the weakly stable matching
problem with a single forbidden edge, even if this edge is ranked last by
both end vertices. The hardness of the maximum-cardinality weakly stable
matching problem in dense graphs (Theorem 2) follows easily from this result.

Problem 1. SMT-FORBIDDEN-1

Input: A complete bipartite graph G = (UUW, E), a forbidden edge P = {uw}
and preference lists with ties.

Question: Does there exist a weakly stable matching M so that uww ¢ M ?

Theorem 1. SMT-FORBIDDEN-1 s NP-complete, even if all ties are of length
two, they appear only on one side of the bipartition and at the beginning of
the complete preference lists, and the forbidden edge is ranked last by both its
end vertices.

Proof. SMT-FORBIDDEN-1 is clearly in NP, as any matching can be checked
for weak stability in linear time.

We reduce from the PERFECT-SMTI problem defined below, which is
known to be NP-complete even if all ties are of length two, and appear on
one side of the bipartition and at the beginning of the preference lists, as
shown by Manlove et al. [26].

Problem 2. PERFECT-SMTI

Input: An incomplete bipartite graph G = (U U W, E), and preference lists
with ties.

Question: Does there exist a perfect weakly stable matching M ¢
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Construction. To each instance Z of PERFECT-SMTI, we construct an in-
stance Z' of SMT-FORBIDDEN-1.

Let G = (U U W, E) be the underlying graph in instance Z. When con-
structing G’ for 7', we add two men wu; and us to U, and two women w;
and wq to W. On vertex classes U' = U U {uy,us} and W' = W U {wy, wo},
G’ will be a complete bipartite graph. As the list below shows, we start with
the original edge set E(G) in stage 0, and then add the remaining edges in
four further stages. An example for the built graph is shown in Figure 1.

0. E(G)
We keep the edges in E(G) and also preserve the vertices’ rankings on
them. These edges are solid black in Figure 1.

L (UxA{w})U({ur} x W)
We first connect u; to all women in W, and w; to all men in U. Man w4
(woman wj) ranks the women from W (men from U) in an arbitrary
order. BEach u € U (w € W) ranks w; (uy) after all their edges in E(G).
These edges are loosely dashed green in Figure 1.

2. (UxW)\ E(G)
Now we add for each pair (u, w) € Ux W with uw ¢ E(G) the edge uw,
where u (w) ranks w (u) even after wy (u;). These edges are densely
dashed blue in Figure 1.

3. [(UU{w}) x {ws}] U [{ua} x (WU {w1})]
Man us is connected to all women from W U {w, }, and ranks all these
women in an arbitrary order. The women from W U {w;} rank uy
worse than any already added edge. Similarly, wy is connected to all
men from M U {u;}, and ranks all these men in an arbitrary order.
The men from M U {u;} rank wy worse than any already added edge.
These edges are dotted red in Figure 1.

4. wywy and ugwy
Finally, we add the edges uyw; and usws, which are ranked last by both
of their end vertices. Edge usws is the only forbidden edge and it is
the violet zigzag edge in Figure 1, while usw, is wavy gray.

Claim: Z admits a perfect weakly stable matching if and only if Z" admits
a weakly stable matching not containing usws.
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2. (Ux W)\ E(G)
.......................................... AAASA MWWV
3. [(UU{ui}) x {wa}] 4. {uy,w;} 4. {ug, wy} (forbidden)
U [{u} x (WU {w1})]

Figure 1: An example for the reduction. The legend below the graph lists the six groups of
edges in the preference order at all vertices. The edges from the PERFECT-SMTI instance
(drawn in solid black) keep their ranks. Every vertex ranks solid black edges best, then
loosely dashed green edges, then densely dashed blue edges, then dotted red edges, then
the wavy gray edge {u1,w} and the forbidden violet zigzag edge {u.,,w2}.

(=) Let M be a perfect weakly stable matching in Z. We construct M’ as
M U{ujwy }U{ugws }. Clearly, M’ is a matching not containing the forbidden
edge usws, so it only remains to show that M’ is weakly stable. We do this
by case distinction on a possible weakly blocking edge.

0. E(G)
Since M does not admit a weakly blocking edge in Z, no edge from the
original F(G) can block M’ weakly in Z'.

L. (U x{w})U({u} x W)
All vertices in U U W rank these edges lower than their edges in M’.

2. (Ux W)\ E(G)
Edges in this set cannot block M’ weakly because they are ranked worse
than edges in M’ by both of their end vertices.
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3. [(U U{ui}) x {wg}] U [(WU {wy}) x {uz}}
Vertices in U U W prefer their edge in M’ to all edges in this set. Since
they are in M’, ujws and usw; also cannot block M’ weakly.

4. wywy and uswy
These two edges are strictly worse than ujws € M’ and usw, € M’ at
all four end vertices.

(<) Let M’ be a weakly stable matching in Z’ and uswq ¢ M’. Since G’
is a complete bipartite graph with the same number of vertices on both
sides, M’ is a perfect matching. In particular, us and w, are matched
by M’, say to w and u, respectively. Since M’ does not contain the for-
bidden edge usws, we have that u # uy and w # ws. Then we have w = w;
and u = uq, as uw blocks M’ weakly otherwise.

If M’ contains an edge uw ¢ E(G) with u € U and w € W, then this
implies that ww; is a weakly blocking edge. Thus, M := M’ \ {ujws, usw; } C
E(G), i.e. it is a perfect matching in G. This M is also weakly stable, as any
weakly blocking edge in G immediately implies a weakly blocking edge for M’,
which contradicts our assumption on M’ being a weakly stable matching. []

As a byproduct, we get that MAX-SMTI-DENSE, the problem of deciding
whether an almost complete bipartite graph admits a perfect weakly stable
matching, is also NP-complete.

Problem 3. MAX-SMTI-DENSE

Input: A bipartite graph G = (U U W, E), where E(G) = {uw : u € U,w €
WA\ {uw*w*} for some u* € U and w* € W, and preference lists with ties.
Question: Does there exist a perfect weakly stable matching M ¢

Theorem 2. MAX-SMTI-DENSE s NP-complete, even if all ties are of length
two, are on one side of the bipartition, and appear at the beginning of the
preference lists.

Proof. MAX-SMTI-DENSE is in NP, as a matching can be checked for stability
in linear time.

We reduce from SMT-FORBIDDEN-1. By Theorem 1, this problem is NP-
complete even if the forbidden edge uw is at the end of the preference lists
of u and w. For each such instance Z of SMT-FORBIDDEN-1, we construct an
instance Z' of MAX-SMTI-DENSE by deleting the forbidden edge uw.
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Claim: The instance Z admits a weakly stable matching if and only if Z
admits a perfect weakly stable matching.

(=) Let M be a weakly stable matching for Z. As SMT-FORBIDDEN-1 gets
a complete bipartite graph as an input, M is a perfect matching. Since M
does not contain the edge uw, it is also a matching in Z'. Moreover, M
is weakly stable there, because the transformation only removed a possible
blocking edge and added none of these.

(<) Let M’ be a perfect weakly stable matching in Z’. Since uw is at the
end of the preference lists of v and w, and M’ is perfect, uw cannot block M’.
Thus, M’ is weakly stable in Z. ]

Having shown a hardness result for the existence of a weakly stable match-
ing even in very restricted instances with a single forbidden edge in Theo-
rem 1, we now turn our attention to strongly and super-stable matchings.

4. Strong and super-stability

As already mentioned in Section 1.1, strongly and super-stable matchings
can be found in polynomial time even if both forced and forbidden edges
occur in the instance [12, 21]. Thus we consider the case of free edges, and
in Theorem 3 and Proposition 4 we show hardness for the strong and super-
stable matching problems in instances with free edges. The same construction
suits both cases. Then, in Proposition 5 we remark that both problems are
fixed-parameter tractable with the number of free edges | F'| as the parameter.

Problem 4. SSMTI-FREE

Input: A bipartite graph G = (UU W, E), a set F C E of free edges, and
preference lists with ties.

Question: Does there exist a matching M so that uw € F' for all uw € E that
blocks M in the strongly/super-stable sense?

In SSMTI-FREE, we define two problem variants simultaneously, because
all our upcoming proofs are identical for both of these problems. For the
super-stable marriage problem with ties and free edges, all super-blocking
edges must be in F', while for the strongly stable marriage problem with ties
and free edges, it is sufficient if a subset of these, the strongly blocking edges,
are in F.

Theorem 3. SSMTI-FREE s NP-complete even in graphs with maximum de-
gree four, and if preference lists of women are derived from a master list.

10
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Figure 2: An example of a clause gadget for the clause C;, containing the variables x1, x4,
and z5. The interconnecting edges are dashed and gray.

Proof. SSMTI-FREE is clearly in NP because the set of edges blocking a match-
ing can be determined in linear time.

We reduce from the 1-IN-3 POSITIVE 3-SAT problem, defined below,
which is known to be NP-complete [31, 15, 28].

Problem 5. 1-IN-3 POSITIVE 3-SAT

Input: A 3-SAT formula, in which no literal is negated and every variable
occurs in at most three clauses.

Question: Does there exist a satisfying truth assignment that sets exactly one
literal in each clause to be true?

Construction. To each instance Z of 1-IN-3 POSITIVE 3-SAT, we construct
an instance Z' of SSMTI-FREE.

Let z1,...,x, be the variables and C4,...,C,, be the clauses of the 1-
IN-3 POSITIVE 3-SAT instance Z. For each clause C;, we add a clause gadget
consisting of three vertices a;, b;, and ¢;, where b; is connected to a; and ¢;, as
shown in Figure 2. While vertices a; and b; do not have any further edge, c;
will be incident to three interconnecting edges leading to variable gadgets.
Vertex b; is ranked first by a; and last by ¢;, and these two vertices are placed
in a tie by b;.

For each variable z;, occurring in the three clauses C;,, C;,, and C;,, we
add a variable gadget with nine vertices yl, 2/, and wi for j € [3], as indicated

in Figure 3. Each vertex z] is connected only to y/ by a free edge, and these

11
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Figure 3: An example of a variable gadget for the variable x; occurring, where x; oc-
curs exactly in the clauses C7, C3, and C5. Free edges are marked by wavy lines, while
interconnecting edges are dashed and gray.

are the only free edges in our construction. For each (¢,7) € [3]?, we add an
edge wfyf , which is ranked second (after zf ) by yf . The vertex w! ranks this
edge at position one if £ = j and else at position two. Finally, we connect
the vertex wf to the vertex ¢;, by an interconnecting edge, ranked at position
one by ¢;, and position three by w?. o

The resulting instance is bipartite: U = {z],w], b;} is the set of men and
W = {y/,ci,a;} is the set of women. One easily sees that the maximum
degree in our reduction is four.

Note that the preference lists of the women in the SSMTI-FREE instance
are derived from a master list. The master list for the women W = {y/, ¢;, a;}
is the following. At the top are all vertices of the form {zf } in a single tie,
followed by all vertices of the form {w’} in a single tie, and finally, all other
vertices {b;} at the bottom of the preference list, in a single tie.

Claim: 7 is a YES-instance if and only if Z' admits a strongly/super-
stable matching.

(=) Let T be a satisfying truth assignment such that for each clause,
exactly one literal is true. For each true variable x; in this assignment, let M
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contain the edges wic;, and yfz¢ for each ¢ € [3]. For all other variables,
let M contain wfyf for each ¢ € [3]. For each clause C;, add the edge a;b;
to M.

Following these rules, we have constructed a matching. It remains to
check that M is super-stable (and thus also strongly stable). Since a; is
matched to its only neighbor, it cannot be part of a super-blocking edge.
Since each ¢; is matched along an interconnecting edge, which is better
than b;, no super-blocking edge involves b;. A super-blocking interconnect-
ing edge ciwf implies that wf is not matched to any yf, however this is only
true if ciwf € M. A super-blocking edge wfyf does not appear. Either w}
is matched to its unique first choice y¢ and therefore not part of a super-
blocking edge, or yf is matched to its unique first choice z{ , and thus, yf is
not part of a super-blocking edge.

(<) Let M be a strongly stable matching (note that any super-stable
matching is also strongly-stable). Then M contains the edge a;b;, and ¢; is
matched to a vertex wf for all ¢ € [m], as else ¢;b; or a;b; blocks M strongly.
If wic; € M, then y?z¢ € M for all a € [3], as else wiy} would be a strongly
blocking edge. This, however, implies that w§c;, € M for all a € (3], as
else wjc;, would be a strongly blocking edge.

Thus, for each variable x;, the matching M contains either all edges wic;,
for ¢ € [3] or none of these edges. Thus, the variables x; such that M
contains wc;, for £ € [3] induce a truth assignment such that for each clause,
exactly one literal is true. O]

This proof aimed at the hardness of the restricted case, in which the
underlying graph has a low maximum degree. For the sake of completeness,
we add another variant, which is defined in a complete bipartite graph.

Proposition 4. SSMTI-FREE is NP-complete, even in complete bipartite graphs,
where each tie has length at most three.

Proof. We reduce from SSMTI-FREE. Given a SSMTI-FREE instance in graph
G, we add all non-present edges between men and women as free edges,
ranked worse than any edge from E(G). We call the resulting graph H.

Clearly, a strongly/super-stable matching in G is also strongly/super-
stable in H, as we only added free edges.

Vice versa, let M be a strongly /super-stable matching in H. Let M’ :=
M N E(G) arise from M by deleting all edges not in E(G). Then M’ clearly
is a matching in G, so it remains to show that M’ is strongly/super-stable.
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Assume that there is a blocking edge uw in G, in the strongly/super-
stable sense. Since uw is not blocking in H, at least one of u and w has to
be matched in H, but not in G. However, this vertex prefers uw also to its
partner in H, and thus, uw is also blocking in H, which is a contradiction. [J

Note that SSMTI-FREE becomes polynomial-time solvable if only a con-
stant number of edges is free in the same way as MAX-SSMI, the problem
of finding a maximum-cardinality stable matching with strict lists and free
edges [3].

Proposition 5. SSMTI-FREE can be solved in O(28nm) time in the strongly
stable case, and in O(28m) time in the super-stable case, where k := |F| is the
number of free edges, n := |V (G)| is the number of vertices, and m := |E(G)|
is the number of edges.

Proof. For each subset () C F of free edges, we construct an instance of
SSMTI-FORCED as follows. Mark all edges in () as forced, and delete all edges
in F'\ Q.

If any of the SSMTI-FORCED instances admits a stable matching, then
this is clearly a stable matching in the SSMTI-FREE instance, as only free
edges were deleted. Vice versa, any solution M for the SSMTI-FREE instance
containing exactly the set of forced edges @ (i.e. Q@ = M N F) immediately
implies a solution for the SSMTI-FORCED instance with forced edges ().

Clearly, there are 2% subsets of F. Since any instance of SSMTI-FORCED
can be solved in O(nm) time in the strongly stable case [12] and in O(m)
time in the super-stable case [21], the running time follows. ]

5. Conclusion

Studying the stable marriage problem with ties combined with restricted
edges, we have shown three NP-completeness results. Our computational
hardness results naturally lead to the question whether imposing master
lists on both sides makes the problems easier to solve. Moreover, it is open
whether SMT-FORBIDDEN-1 remains hard in bounded-degree graphs. In ad-
dition, one may try to identify relevant parameters for our problems and then
decide whether they are fixed-parameter tractable or admit a polynomial-
sized kernel with respect to these parameters.

Acknowledgments. The authors thank David Manlove and Rolf Niedermeier
for useful suggestions that improved the presentation of this paper.
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