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ABSTRACT 

In the stable marriage problem, a set of men and a set of women are given, each of 

whom has a strictly ordered preference list over the acceptable agents in the opposite 

class. A matching is called stable if it is not blocked by any pair of agents, who 

mutually prefer each other to their respective partner. Ties in the preferences allow 

for three different definitions for a stable matching: weak, strong and super-stability. 

Besides this, acceptable pairs in the instance can be restricted in their ability of 

blocking a matching or being part of it, which again generates three categories of 

restrictions on acceptable pairs. Forced pairs must be in a stable matching, forbidden 

pairs must not appear in it, and lastly, free pairs cannot block any matching. 

     

    Our computational complexity study targets the existence of a stable solution for 

each of the three stability definitions, in the presence of each of the three types of 

restricted pairs. We solve all cases that were still open. As a byproduct, we also derive 

that the maximum size weakly stable matching problem is hard even in very dense 

graphs, which may be of independent interest. 
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A stabil párosítás probléma gyengén rendezett listákkal és 

korlátozott élekkel 

CSEH ÁGNES – KLAUS HEEGER 

ÖSSZEFOGLALÓ 

A klasszikus stabil párosítás problémában nők és férfiak egy halmaza adott. Mindenki 

felállít egy szigorúan rendezett preferencialistát az ellenkezű nem néhány tagjáról. 

Akkor nevezünk egy párosítást stabilnak, ha azt nem blokkolja egyetlen pár sem. Egy 

pár akkor blokkolja a párosítást, ha mindkét tagja magasabban rangsorolja egymást, 

mint a párosításban hozzájuk rendelt személyeket. Ha a preferencialisták nem 

szigorúan, hanem gyengén rendezettek, akkor háromféle stabilitási definícióval 

dolgozhatunk: gyenge, erős és szuper-stabilitással. Egyes párok lehetnek 

korlátozottak is: a kötelező párokat muszáj, a tiltott párokat pedig tilos tartalmaznia a 

keresett stabil párosításnak. A szabad élek lehetnek párosítás tagjai, de nem 

blokkolhatnak párosítást. 

Cikkünkben bonyolultságelméleti szempontból tanulmányozzuk a stabil megoldás 

létezését mindhárom stabilitási definícióra, mindhárom féle korlátozott él 

jelenlétében. Minden eddig nyitott kérdést megválaszolunk. Az is kiderül, hogy a 

maximális méretű gyengén stabil párosítás problémája még nagyon sűrű gráfokban is 

NP-teljes. 

 

 

 

 

JEL: C63, C78 

Kulcsszavak: stabil párosítás, korlátozott élek, bonyolultság 
 



The stable marriage problem with ties and restricted

edges
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Abstract

In the stable marriage problem, a set of men and a set of women are given,
each of whom has a strictly ordered preference list over the acceptable agents
in the opposite class. A matching is called stable if it is not blocked by any
pair of agents, who mutually prefer each other to their respective partner.
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1. Introduction1

In the classical stable marriage problem (sm) [14], a bipartite graph is2

given, where one side symbolizes a set of men U , while the other side sym-3

bolizes a set of women W . Man u and woman w are connected by the edge uw4

if they find one another mutually acceptable. In the most basic setting, each5

participant provides a strictly ordered preference list of the acceptable agents6

of the opposite gender. An edge uw blocks matching M if it is not in M , but7

each of u and w is either unmatched or prefers the other to their respective8

partner in M . A stable matching is a matching not blocked by any edge.9

From the seminal paper of Gale and Shapley [14], we know that the exis-10

tence of such a stable solution is guaranteed and a stable matching can be11

found in linear time.12

Several real-world applications [6] require a relaxation of the strict or-13

der to weak order, or, in other words, preference lists with ties, leading to14

the stable marriage problem with ties (smt) [16, 18, 24]. When ties occur,15

the definition of a blocking edge needs to be revisited. In the literature,16

three intuitive definitions are used, namely weakly, strongly and super-stable17

matchings [16]. According to weak stability, a matching is weakly blocked18

by an edge uw if agents u and w both strictly prefer one another to their19

partners in the matching. A strongly blocking edge is preferred strictly by20

one end vertex, whereas it is not strictly worse than the matching edge at the21

other end vertex. A super-blocking edge is at least as good as the matching22

edge for both end vertices in the super-stable case. Super-stable matchings23

are strongly stable and strongly stable matchings are weakly stable by def-24

inition, because weakly blocking edges are strongly blocking, and strongly25

blocking edges are super-blocking at the same time.26

Weak and strong stability serve as the goal to achieve in most applica-27

tions, such as college admission programs. In most countries, colleges are not28

required to rank all applicants in a strict order of preference, hence large ties29

occur in their lists. According to the equal treatment policy used in Chile30

and Hungary for example, it may not occur that a student is rejected from a31

college preferred by her, even though other students with the same score are32

admitted [7, 29]. Other countries, such as Ireland [9], break ties with lottery,33

which gives way to a weakly stable solution according to the original, weak34

order. Super-stable matchings can represent safe solutions if agents provide35
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uw must be in M uw can be in M uw must not be in M
uw can block M forced unrestricted forbidden
uw cannot block M forced free irrelevant

Table 1: The three types of restricted edges are marked with bold letters. The columns
tells edge uw’s role regarding being in a matching, while the rows split cases based on
uw’s ability to block a matching.

uncertain preferences that mask an underlying strict order [30, 5, 4]. If two36

edges are in the same tie because of incomplete information derived from the37

agent, then super-stable matchings form the set of matchings that guarantee38

stability for all possible true preferences.39

Another classical direction of research is to distinguish some of the edges40

based on their ability to be part of or to block a matching. Table 1 provides41

a structured overview of the three sorts of restricted edges that have been42

defined in earlier papers [20, 11, 12, 3, 22, 10]. The mechanism designer can43

specify three sets of restricted edges: forced edges must be in the output44

matching, forbidden edges must not appear in it, and finally, free edges45

cannot block the matching, regardless of the preference ordering.46

The market designer’s motivation behind forced and forbidden edges is47

clear. By adding these restricted edges to the instance, one can shrink the48

set of stable solutions to the matchings that contain a particularly important49

or avoid an unwelcome partnership between agents. Free edges model a less50

intuitive, yet ubiquitous scenario in applications [3]. Agents are often not51

aware of the preferences of others, not even once the matching has been52

specified. This typically occurs in very large markets, such as job markets [2],53

or if the preferences are calculated rather than just provided by the agents,54

such as in medical [8] and social markets [1]. Agents who cannot exchange55

their preferences are connected via a free edge. If a matching is only blocked56

by free edges, then no pair of agents can undermine the stability of it.57

In this paper, we combine weakly ordered lists and restricted edges, and58

determine the computational complexity of finding a stable matching in all59

cases not solved yet.60

1.1. Literature review61

We first focus on the known results for the smt problem without restricted62

edges, and then switch to the sm problem with edge restrictions. Finally, we63

list all progress up to our paper in smt with restricted edges.64
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Ties. If all edges are unrestricted, a weakly stable matching always exists,65

because generating any linear extension to each preference list results in a66

classical sm instance, which admits a solution [14]. This solution remains67

stable in the original instance as well. On the other hand, strong and super-68

stable matchings are not guaranteed to exist. However, there are polynomial-69

time algorithms to output a strongly/super-stable matching or a proof for70

its nonexistence [16, 25].71

Restricted edges. Dias et al. [11] showed that the problem of finding a stable72

matching in a sm instance with forced and forbidden edges or reporting that73

none exists is solvable in O(m) time, where m is the number of edges in74

the instance. Approximation algorithms for instances not admitting any75

stable matching including all forced and avoiding all forbidden edges were76

studied in [10]. The existence of free edges can only enlarge the set of stable77

solutions, thus a stable matching with free edges always exists. However, in78

the presence of free edges, a maximum-cardinality stable matching is NP-79

hard to find [3]. Kwanashie [22, Sections 4 and 5] performed an exhaustive80

study on various stable matching problems with free edges. The term “stable81

with free edges” [8, 13] is equivalent to the adjective “socially stable” [3, 22]82

for a matching.83

Ties and restricted edges. Table 2 illustrates the known and our new re-84

sults on problems that arise when ties and restricted edges are combined85

in an instance. Weakly stable matchings in the presence of forbidden edges86

were studied by Scott [32], where the author shows that deciding whether a87

matching exists avoiding the set of forbidden edges is NP-complete. A simi-88

lar hardness result was derived by Manlove et al. [26] for the case of forced89

edges, even if the instance has a single forced edge. Forced and forbidden90

edges in super-stable matchings were studied by Fleiner et al. [12], who gave a91

polynomial-time algorithm to decide whether a stable solution exists. Strong92

stability in the presence of forced and forbidden edges is covered by Kun-93

ysz [21], who gave a polynomial-time algorithm for the weighted strongly94

stable matching problem with non-negative edge weights. Since strongly sta-95

ble matchings are always of the same cardinality [23, 18], a stable solution96

or a proof for its nonexistence can be found via setting the edge weights to97

0 for forbidden edges, 2 for forced edges, and 1 for unrestricted edges.98
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Existence weak strong super
forbidden NP-complete [32] even if |P | = 1 O(nm) [21] O(m) [12]
forced NP-complete even if |Q| = 1 [26] O(nm) [21] O(m) [12]
free always exists NP-complete NP-complete

Table 2: Previous and our results summarized in a table. The contribution of this paper
is marked by bold gray font. The instance has n vertices, m edges, |P | forbidden edges,
and |Q| forced edges.

1.2. Our contributions99

In Section 3 we prove a stronger result than the hardness proof in [32]100

delivers: we show that finding a weakly stable matching in the presence of101

forbidden edges is NP-complete even if the instance has a single forbidden102

edge.103

As a byproduct, we gain insight into the well-known maximum size weakly104

stable matching problem (without any edge restriction). This problem is105

known to be NP-complete [19, 26], even if preference lists are of length at most106

three [17, 27]. On the other hand, if the graph is complete, a complete weakly107

stable matching is guaranteed to exist. It turns out that this completeness108

is absolutely crucial to keep the problem tractable: as we show here, if the109

graph is a complete bipartite graph missing exactly one edge, then deciding110

whether a perfect weakly stable matching exists is NP-complete.111

We turn to the problem of free edges under strong and super-stability in112

Section 4. We show that deciding whether a strongly/super-stable matching113

exists when free edges occur in the instance is NP-complete. This hard-114

ness is in sharp contrast to the polynomial-time algorithms for the weighted115

strongly/ super-stable matching problems. Afterwards, we show that decid-116

ing the existence of a strongly or super-stable matching in an instance with117

free edges is fixed-parameter tractable parameterized by the number of free118

edges.119

2. Preliminaries120

The input of the stable marriage problem with ties consists of a bipartite121

graph G = (U ∪W,E) and for each v ∈ U ∪W , a weakly ordered preference122

list Ov of the edges incident to v. We denote the number of vertices in G123

by n, while m stands for the number of edges. An edge connecting vertices u124

and w is denoted by uw. We say that the preference lists in an instance are125
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derived from a master list if there is a weak order O of U∪W so that each Ov126

where v ∈ U ∪W can be obtained by deleting entries from O.127

The set of restricted edges consists of the set of forbidden edges P , the set128

of forced edges Q, and the set of free edges F . These three sets are disjoint.129

Definition 1. A matching M is weakly/strongly/super-stable with restricted130

edge sets P,Q, and F , if M∩P = ∅, Q ⊆M , and the set of edges blocking M131

in a weakly/strongly/super sense is a subset of F .132

3. Weak stability133

In Theorem 1 we present a hardness proof for the weakly stable matching134

problem with a single forbidden edge, even if this edge is ranked last by135

both end vertices. The hardness of the maximum-cardinality weakly stable136

matching problem in dense graphs (Theorem 2) follows easily from this result.137

Problem 1. smt-forbidden-1138

Input: A complete bipartite graph G = (U∪W,E), a forbidden edge P = {uw}139

and preference lists with ties.140

Question: Does there exist a weakly stable matching M so that uw /∈M?141

Theorem 1. smt-forbidden-1 is NP-complete, even if all ties are of length142

two, they appear only on one side of the bipartition and at the beginning of143

the complete preference lists, and the forbidden edge is ranked last by both its144

end vertices.145

Proof. smt-forbidden-1 is clearly in NP, as any matching can be checked146

for weak stability in linear time.147

We reduce from the perfect-smti problem defined below, which is148

known to be NP-complete even if all ties are of length two, and appear on149

one side of the bipartition and at the beginning of the preference lists, as150

shown by Manlove et al. [26].151

Problem 2. perfect-smti152

Input: An incomplete bipartite graph G = (U ∪W,E), and preference lists153

with ties.154

Question: Does there exist a perfect weakly stable matching M?155
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Construction. To each instance I of perfect-smti, we construct an in-156

stance I ′ of smt-forbidden-1.157

Let G = (U ∪W,E) be the underlying graph in instance I. When con-158

structing G′ for I ′, we add two men u1 and u2 to U , and two women w1159

and w2 to W . On vertex classes U ′ = U ∪ {u1, u2} and W ′ = W ∪ {w1, w2},160

G′ will be a complete bipartite graph. As the list below shows, we start with161

the original edge set E(G) in stage 0, and then add the remaining edges in162

four further stages. An example for the built graph is shown in Figure 1.163

0. E(G)164

We keep the edges in E(G) and also preserve the vertices’ rankings on165

them. These edges are solid black in Figure 1.166

1. (U × {w1}) ∪ ({u1} ×W )167

We first connect u1 to all women in W , and w1 to all men in U . Man u1168

(woman w1) ranks the women from W (men from U) in an arbitrary169

order. Each u ∈ U (w ∈ W ) ranks w1 (u1) after all their edges in E(G).170

These edges are loosely dashed green in Figure 1.171

2. (U ×W ) \ E(G)172

Now we add for each pair (u,w) ∈ U×W with uw /∈ E(G) the edge uw,173

where u (w) ranks w (u) even after w1 (u1). These edges are densely174

dashed blue in Figure 1.175

3.
[
(U ∪ {u1})× {w2}

]
∪
[
{u2} × (W ∪ {w1})

]
176

Man u2 is connected to all women from W ∪ {w1}, and ranks all these177

women in an arbitrary order. The women from W ∪ {w1} rank u2178

worse than any already added edge. Similarly, w2 is connected to all179

men from M ∪ {u1}, and ranks all these men in an arbitrary order.180

The men from M ∪ {u1} rank w2 worse than any already added edge.181

These edges are dotted red in Figure 1.182

4. u1w1 and u2w2183

Finally, we add the edges u1w1 and u2w2, which are ranked last by both184

of their end vertices. Edge u2w2 is the only forbidden edge and it is185

the violet zigzag edge in Figure 1, while u2w2 is wavy gray.186

Claim: I admits a perfect weakly stable matching if and only if I ′ admits187

a weakly stable matching not containing u2w2.188
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u1 u2

w1 w2

0. E(G) 1. (U × {w1}) ∪ ({u1} ×W ) 2. (U ×W ) \ E(G)

3.
[
(U ∪ {u1})× {w2}

]
3. ∪

[
{u2} × (W ∪ {w1})

] 4. {u1, w1} 4. {u2, w2} (forbidden)

Figure 1: An example for the reduction. The legend below the graph lists the six groups of
edges in the preference order at all vertices. The edges from the perfect-smti instance
(drawn in solid black) keep their ranks. Every vertex ranks solid black edges best, then
loosely dashed green edges, then densely dashed blue edges, then dotted red edges, then
the wavy gray edge {u1, w1} and the forbidden violet zigzag edge {uw, w2}.

(⇒) Let M be a perfect weakly stable matching in I. We construct M ′ as189

M∪{u1w2}∪{u2w1}. Clearly, M ′ is a matching not containing the forbidden190

edge u2w2, so it only remains to show that M ′ is weakly stable. We do this191

by case distinction on a possible weakly blocking edge.192

0. E(G)193

Since M does not admit a weakly blocking edge in I, no edge from the194

original E(G) can block M ′ weakly in I ′.195

1. (U × {w1}) ∪ ({u1} ×W )196

All vertices in U ∪W rank these edges lower than their edges in M ′.197

2. (U ×W ) \ E(G)198

Edges in this set cannot block M ′ weakly because they are ranked worse199

than edges in M ′ by both of their end vertices.200
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3.
[
(U ∪ {u1})× {w2}

]
∪
[
(W ∪ {w1})× {u2}

]
201

Vertices in U ∪W prefer their edge in M ′ to all edges in this set. Since202

they are in M ′, u1w2 and u2w1 also cannot block M ′ weakly.203

4. u1w1 and u2w2204

These two edges are strictly worse than u1w2 ∈ M ′ and u2w1 ∈ M ′ at205

all four end vertices.206

(⇐) Let M ′ be a weakly stable matching in I ′ and u2w2 /∈M ′. Since G′207

is a complete bipartite graph with the same number of vertices on both208

sides, M ′ is a perfect matching. In particular, u2 and w2 are matched209

by M ′, say to w and u, respectively. Since M ′ does not contain the for-210

bidden edge u2w2, we have that u 6= u2 and w 6= w2. Then we have w = w1211

and u = u1, as uw blocks M ′ weakly otherwise.212

If M ′ contains an edge uw /∈ E(G) with u ∈ U and w ∈ W , then this213

implies that uw1 is a weakly blocking edge. Thus, M := M ′ \{u1w2, u2w1} ⊆214

E(G), i.e. it is a perfect matching in G. This M is also weakly stable, as any215

weakly blocking edge in G immediately implies a weakly blocking edge for M ′,216

which contradicts our assumption on M ′ being a weakly stable matching.217

As a byproduct, we get that max-smti-dense, the problem of deciding218

whether an almost complete bipartite graph admits a perfect weakly stable219

matching, is also NP-complete.220

Problem 3. max-smti-dense221

Input: A bipartite graph G = (U ∪W,E), where E(G) = {uw : u ∈ U,w ∈222

W} \ {u∗w∗} for some u∗ ∈ U and w∗ ∈ W , and preference lists with ties.223

Question: Does there exist a perfect weakly stable matching M?224

Theorem 2. max-smti-dense is NP-complete, even if all ties are of length225

two, are on one side of the bipartition, and appear at the beginning of the226

preference lists.227

Proof. max-smti-dense is in NP, as a matching can be checked for stability228

in linear time.229

We reduce from smt-forbidden-1. By Theorem 1, this problem is NP-230

complete even if the forbidden edge uw is at the end of the preference lists231

of u and w. For each such instance I of smt-forbidden-1, we construct an232

instance I ′ of max-smti-dense by deleting the forbidden edge uw.233
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Claim: The instance I admits a weakly stable matching if and only if I ′234

admits a perfect weakly stable matching.235

(⇒) Let M be a weakly stable matching for I. As smt-forbidden-1 gets236

a complete bipartite graph as an input, M is a perfect matching. Since M237

does not contain the edge uw, it is also a matching in I ′. Moreover, M238

is weakly stable there, because the transformation only removed a possible239

blocking edge and added none of these.240

(⇐) Let M ′ be a perfect weakly stable matching in I ′. Since uw is at the241

end of the preference lists of u and w, and M ′ is perfect, uw cannot block M ′.242

Thus, M ′ is weakly stable in I.243

Having shown a hardness result for the existence of a weakly stable match-244

ing even in very restricted instances with a single forbidden edge in Theo-245

rem 1, we now turn our attention to strongly and super-stable matchings.246

4. Strong and super-stability247

As already mentioned in Section 1.1, strongly and super-stable matchings248

can be found in polynomial time even if both forced and forbidden edges249

occur in the instance [12, 21]. Thus we consider the case of free edges, and250

in Theorem 3 and Proposition 4 we show hardness for the strong and super-251

stable matching problems in instances with free edges. The same construction252

suits both cases. Then, in Proposition 5 we remark that both problems are253

fixed-parameter tractable with the number of free edges |F | as the parameter.254

Problem 4. ssmti-free255

Input: A bipartite graph G = (U ∪W,E), a set F ⊆ E of free edges, and256

preference lists with ties.257

Question: Does there exist a matching M so that uw ∈ F for all uw ∈ E that258

blocks M in the strongly/super-stable sense?259

In ssmti-free, we define two problem variants simultaneously, because260

all our upcoming proofs are identical for both of these problems. For the261

super-stable marriage problem with ties and free edges, all super-blocking262

edges must be in F , while for the strongly stable marriage problem with ties263

and free edges, it is sufficient if a subset of these, the strongly blocking edges,264

are in F .265

Theorem 3. ssmti-free is NP-complete even in graphs with maximum de-266

gree four, and if preference lists of women are derived from a master list.267
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ai

bi

ci
1

1 1

2

w2
1 w1

2 w1
3

3

1

3
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3

1

Figure 2: An example of a clause gadget for the clause Ci, containing the variables x1, x4,
and x5. The interconnecting edges are dashed and gray.

Proof. ssmti-free is clearly in NP because the set of edges blocking a match-268

ing can be determined in linear time.269

We reduce from the 1-in-3 positive 3-sat problem, defined below,270

which is known to be NP-complete [31, 15, 28].271

Problem 5. 1-in-3 positive 3-sat272

Input: A 3-SAT formula, in which no literal is negated and every variable273

occurs in at most three clauses.274

Question: Does there exist a satisfying truth assignment that sets exactly one275

literal in each clause to be true?276

Construction. To each instance I of 1-in-3 positive 3-sat, we construct277

an instance I ′ of ssmti-free.278

Let x1, . . . , xn be the variables and C1, . . . , Cm be the clauses of the 1-279

in-3 positive 3-sat instance I. For each clause Ci, we add a clause gadget280

consisting of three vertices ai, bi, and ci, where bi is connected to ai and ci, as281

shown in Figure 2. While vertices ai and bi do not have any further edge, ci282

will be incident to three interconnecting edges leading to variable gadgets.283

Vertex bi is ranked first by ai and last by ci, and these two vertices are placed284

in a tie by bi.285

For each variable xi, occurring in the three clauses Ci1 , Ci2 , and Ci3 , we286

add a variable gadget with nine vertices yji , z
j
i , and wj

i for j ∈ [3], as indicated287

in Figure 3. Each vertex zji is connected only to yji by a free edge, and these288
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y1i

z1i

w1
i

y2i

z2i

w2
i

y3i

z3i

w3
i
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2
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2

2

2

2

1

2

c1 c3 c5

3

1

3

1

3

1

Figure 3: An example of a variable gadget for the variable xi occurring, where xi oc-
curs exactly in the clauses C1, C3, and C5. Free edges are marked by wavy lines, while
interconnecting edges are dashed and gray.

are the only free edges in our construction. For each (`, j) ∈ [3]2, we add an289

edge w`
iy

j
i , which is ranked second (after zji ) by yji . The vertex w`

i ranks this290

edge at position one if ` = j and else at position two. Finally, we connect291

the vertex w`
i to the vertex ci` by an interconnecting edge, ranked at position292

one by ci` and position three by w`
i .293

The resulting instance is bipartite: U = {zji , w
j
i , bi} is the set of men and294

W = {yji , ci, ai} is the set of women. One easily sees that the maximum295

degree in our reduction is four.296

Note that the preference lists of the women in the ssmti-free instance297

are derived from a master list. The master list for the women W = {yji , ci, ai}298

is the following. At the top are all vertices of the form {zji } in a single tie,299

followed by all vertices of the form {wj
i } in a single tie, and finally, all other300

vertices {bi} at the bottom of the preference list, in a single tie.301

Claim: I is a YES-instance if and only if I ′ admits a strongly/super-302

stable matching.303

(⇒) Let T be a satisfying truth assignment such that for each clause,304

exactly one literal is true. For each true variable xi in this assignment, let M305
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contain the edges w`
ici` and y`iz

`
i for each ` ∈ [3]. For all other variables,306

let M contain w`
iy

`
i for each ` ∈ [3]. For each clause Ci, add the edge aibi307

to M .308

Following these rules, we have constructed a matching. It remains to309

check that M is super-stable (and thus also strongly stable). Since ai is310

matched to its only neighbor, it cannot be part of a super-blocking edge.311

Since each ci is matched along an interconnecting edge, which is better312

than bi, no super-blocking edge involves bi. A super-blocking interconnect-313

ing edge ciw
`
j implies that w`

j is not matched to any y`j, however this is only314

true if ciw
`
j ∈ M . A super-blocking edge w`

iy
j
i does not appear. Either w`

i315

is matched to its unique first choice y`i and therefore not part of a super-316

blocking edge, or yji is matched to its unique first choice zji , and thus, yji is317

not part of a super-blocking edge.318

(⇐) Let M be a strongly stable matching (note that any super-stable319

matching is also strongly-stable). Then M contains the edge aibi, and ci is320

matched to a vertex w`
j for all i ∈ [m], as else cibi or aibi blocks M strongly.321

If w`
jci ∈ M , then yaj z

a
j ∈ M for all a ∈ [3], as else w`

jy
a
j would be a strongly322

blocking edge. This, however, implies that wa
j cja ∈ M for all a ∈ [3], as323

else wa
j cja would be a strongly blocking edge.324

Thus, for each variable xi, the matching M contains either all edges w`
ici`325

for ` ∈ [3] or none of these edges. Thus, the variables xi such that M326

contains w`
ici` for ` ∈ [3] induce a truth assignment such that for each clause,327

exactly one literal is true.328

This proof aimed at the hardness of the restricted case, in which the329

underlying graph has a low maximum degree. For the sake of completeness,330

we add another variant, which is defined in a complete bipartite graph.331

Proposition 4. ssmti-free is NP-complete, even in complete bipartite graphs,332

where each tie has length at most three.333

Proof. We reduce from ssmti-free. Given a ssmti-free instance in graph334

G, we add all non-present edges between men and women as free edges,335

ranked worse than any edge from E(G). We call the resulting graph H.336

Clearly, a strongly/super-stable matching in G is also strongly/super-337

stable in H, as we only added free edges.338

Vice versa, let M be a strongly/super-stable matching in H. Let M ′ :=339

M ∩E(G) arise from M by deleting all edges not in E(G). Then M ′ clearly340

is a matching in G, so it remains to show that M ′ is strongly/super-stable.341
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Assume that there is a blocking edge uw in G, in the strongly/super-342

stable sense. Since uw is not blocking in H, at least one of u and w has to343

be matched in H, but not in G. However, this vertex prefers uw also to its344

partner in H, and thus, uw is also blocking in H, which is a contradiction.345

Note that ssmti-free becomes polynomial-time solvable if only a con-346

stant number of edges is free in the same way as max-ssmi, the problem347

of finding a maximum-cardinality stable matching with strict lists and free348

edges [3].349

Proposition 5. ssmti-free can be solved in O(2knm) time in the strongly350

stable case, and in O(2km) time in the super-stable case, where k := |F | is the351

number of free edges, n := |V (G)| is the number of vertices, and m := |E(G)|352

is the number of edges.353

Proof. For each subset Q ⊆ F of free edges, we construct an instance of354

ssmti-forced as follows. Mark all edges in Q as forced, and delete all edges355

in F \Q.356

If any of the ssmti-forced instances admits a stable matching, then357

this is clearly a stable matching in the ssmti-free instance, as only free358

edges were deleted. Vice versa, any solution M for the ssmti-free instance359

containing exactly the set of forced edges Q (i.e. Q = M ∩ F ) immediately360

implies a solution for the ssmti-forced instance with forced edges Q.361

Clearly, there are 2k subsets of F . Since any instance of ssmti-forced362

can be solved in O(nm) time in the strongly stable case [12] and in O(m)363

time in the super-stable case [21], the running time follows.364

5. Conclusion365

Studying the stable marriage problem with ties combined with restricted366

edges, we have shown three NP-completeness results. Our computational367

hardness results naturally lead to the question whether imposing master368

lists on both sides makes the problems easier to solve. Moreover, it is open369

whether smt-forbidden-1 remains hard in bounded-degree graphs. In ad-370

dition, one may try to identify relevant parameters for our problems and then371

decide whether they are fixed-parameter tractable or admit a polynomial-372

sized kernel with respect to these parameters.373
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[6] P. Biró. Applications of matching models under preferences. Trends in397

Computational Social Choice, page 345, 2017.398
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