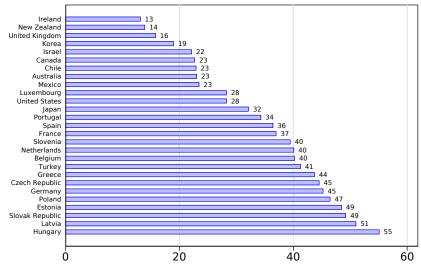
Tax Evasion and the Minimum Wage: Evidence from Hungary

Anikó Bíró (Centre for Economic and Regional Studies) Dániel Prinz (Harvard University) László Sándor (Luxembourg School of Finance)

November 2019


Research Question

Can tax evasion around the minimum wage be a rationale for substantial taxation of minimum wage earners?

Optimal Tax Literature Says Don't Tax Minimum Wage

Lee and Saez (2012) "In a model with extensive labor supply responses only, a binding minimum wage associated with a positive tax rate on minimum wage earnings is second-best Pareto inefficient."

But Minimum Wage Taxed in Most Developed Countries

% Employer + Employee Tax and Social Contributions on Minimum Wage Source: OECD FOCUS on Minimum wages after the crisis: Making them pay (May 2015)

► Leverage a tax reform in Hungary that increased audit threat for wages below a specific level (double minimum wage)

- ► Leverage a tax reform in Hungary that increased audit threat for wages below a specific level (double minimum wage)
- ► Exploit detailed administrative data: track employment, earnings, worker and firm characteristics

- ► Leverage a tax reform in Hungary that increased audit threat for wages below a specific level (double minimum wage)
- Exploit detailed administrative data: track employment, earnings, worker and firm characteristics
- Examine impact of reform on reported earnings and formal employment

- ► Leverage a tax reform in Hungary that increased audit threat for wages below a specific level (double minimum wage)
- Exploit detailed administrative data: track employment, earnings, worker and firm characteristics
- Examine impact of reform on reported earnings and formal employment
- Develop of a model of tax evasion around the minimum wage

- Quasi-experimental evidence on reporting and informality responses to audit threats
 - ► Incentives: Allingham and Sandmo (1972)
 - ► Causal impact of enforcement strategies: Slemrod (2019)
 - ▶ Random audits: Bergolo et al. (2019), Kleven et al. (2011)
 - ► Audit avoidance: Almunia and Lopez-Rodriguez (2018)

- 1. Quasi-experimental evidence on reporting and informality responses to audit threats
 - ► Incentives: Allingham and Sandmo (1972)
 - ► Causal impact of enforcement strategies: Slemrod (2019)
 - ▶ Random audits: Bergolo et al. (2019), Kleven et al. (2011)
 - ► Audit avoidance: Almunia and Lopez-Rodriguez (2018)
- 2. New evidence on tax evasion at the minimum wage
 - ► Elek, Köllő, Reizer and Szabó (2012), Reizer (2011), Tonin (2011)

- 1. Quasi-experimental evidence on reporting and informality responses to audit threats
 - ► Incentives: Allingham and Sandmo (1972)
 - ► Causal impact of enforcement strategies: Slemrod (2019)
 - ▶ Random audits: Bergolo et al. (2019), Kleven et al. (2011)
 - ► Audit avoidance: Almunia and Lopez-Rodriguez (2018)
- 2. New evidence on tax evasion at the minimum wage
 - ► Elek, Köllő, Reizer and Szabó (2012), Reizer (2011), Tonin (2011)
- Discuss theory of minimum wage taxation in the presence of underreporting
 - ▶ Lee and Saez (2012)

Background

Evidence on Tax Evasion and Reporting Response

Evidence on Formal Employment Response

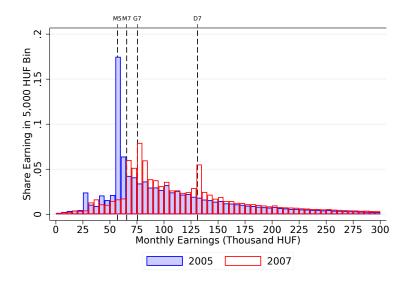
Model

Discussion

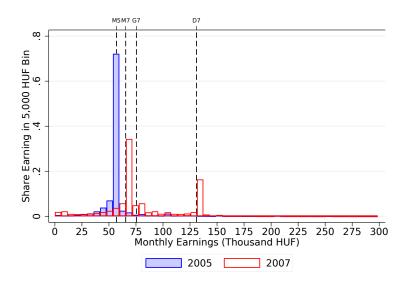
Background

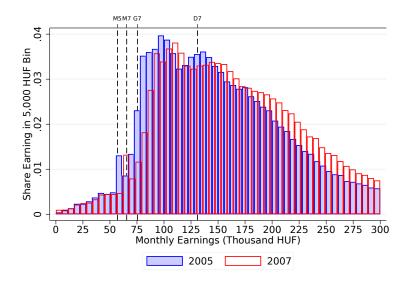
Hungarian Double Minimum Wage Reform

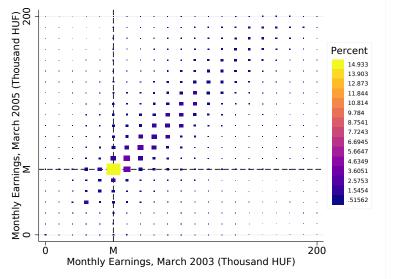
- Between September 2006 and December 2010, employers had to pay social security contributions based on the double of minimum wage
- ► They could request exemptions for lower wages through a separate form
- Increased threat of audit for companies below this threshold
- ► (Higher minimum wage for skilled jobs introduced in 2006)


Data and Sample

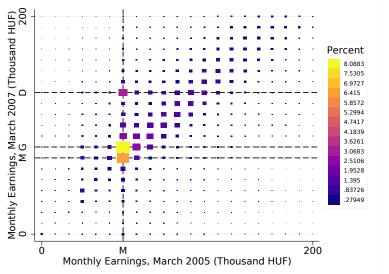
- Use administrative data from Hungary
- Covers 2003-2011
- ▶ 50% sample of 2003 population aged 5-74
- Links employment, tax, pension, health, labor, etc.
- Use data for a representative month (March)
- Restrict to sample aged 18-65
- Drop cases where an individual has more than one job
- Separate private sector employees, public sector employees, and self-employed



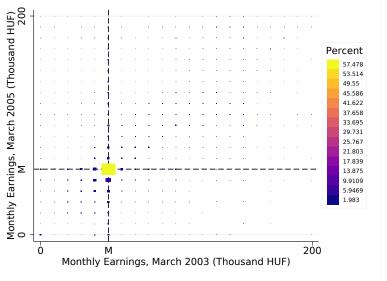

Evidence of Bunching: Private Sector Employees


Evidence of Bunching: Self-Employed

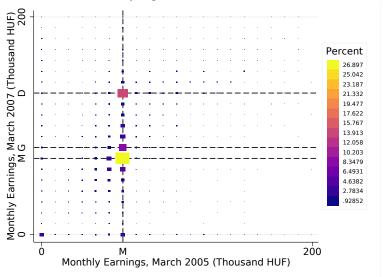
Evidence of Bunching: Public Sector Employees



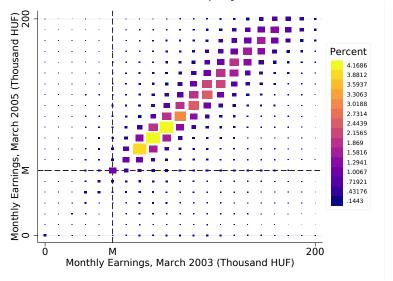
Transitions: Private Sector Employees $2003 \rightarrow 2005$


Note: M stands for the minimum wage.

Transitions: Private Sector Employees $2005 \rightarrow 2007$


Note: M stands for the minimum wage, G for the guaranteed minimum wage and D for the double minimum wage.

Transitions: Self-Employed 2003 \rightarrow 2005


Note: M stands for the minimum wage.

Transitions: Self-Employed 2005 \rightarrow 2007


Note: M stands for the minimum wage, G for the guaranteed minimum wage and D for the double minimum wage.

Transitions: Public Sector Employees $2003 \rightarrow 2005$

Note: M stands for the minimum wage.

Transitions: Public Sector Employees 2005 \rightarrow 2007

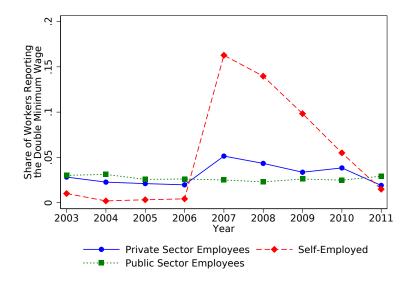
Note: M stands for the minimum wage, G for the guaranteed minimum wage and D for the double minimum wage.

Summary of Main Results

Private mployee	Self- Employed	Public Employee
· ·		Employee
18 26%	0 /	
10.20/0	68.53%	1.13%
2.11%	0.32%	2.57%
5.77%	30.89%	1.14%
6.41%	3.51%	0.75%
5.14%	16.28%	2.51%
L0.26%	19.16%	2.04%
099,336	117,991	299,819
150,817	134,268	286,386
	18.26% 2.11% 5.77% 6.41% 5.14% 10.26% 099,336 150,817	5.77% 30.89% 6.41% 3.51% 5.14% 16.28% 10.26% 19.16% 099,336 117,991

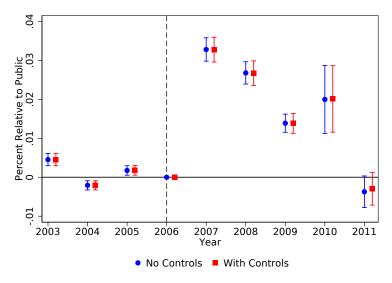
Note: MW (GMW, DMW) earners are defined as earning between the MW (GMW, DMW) plus $5{,}000~{\rm HUF}.$

Regression Framework

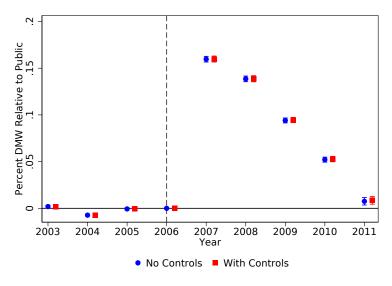

Event study:

$$DMW_{it} = \beta_0 + \sum_{t=2003}^{2011} \beta_{1t} PE_{it} + \sum_{t=2003}^{2011} \beta_{2t} SE_{it} + \alpha_E + \tau_t + \varepsilon_{it}$$
 (1)

where

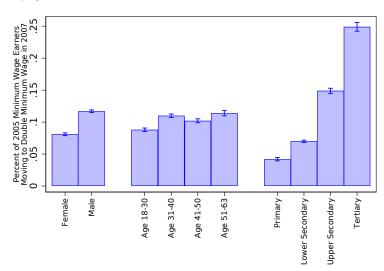

- i indexes workers
- $ightharpoonup PE_{it}$ is an indicator for private sector employee
- SE_{it} is an indicator for self-employed
- $ightharpoonup lpha_E$ are sector fixed effects (public sector employee vs private sector employee vs self-employed)
- $ightharpoonup au_t$ are year fixed effects

Event Study Estimates: Reporting Response

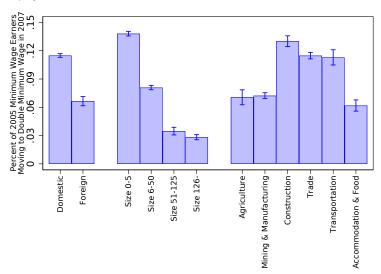

Event Study Estimates: Reporting Response

Private Sector Employees

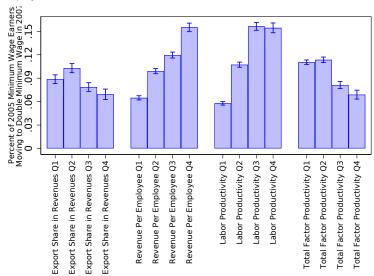
Event Study Estimates: Reporting Response


Self-Employed

▶ Pooled Version


Heterogeneity: Worker Characteristics

Private Employees


Heterogeneity: Firm Characteristics

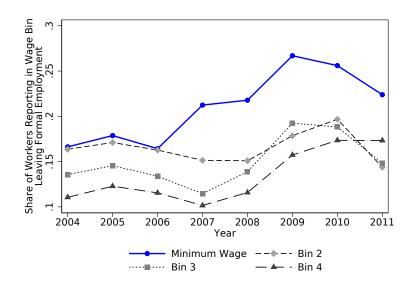
Private Employees

Heterogeneity: Firm Quality

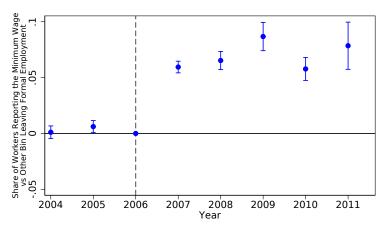
Private Employees

Evidence on Formal Employment Response

Regression Framework

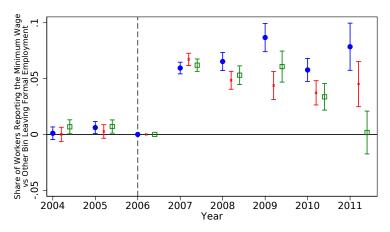

Event study:

$$Exit_{it} = \beta_0 + \sum_{t=2004}^{2011} \beta_t MW_{it} + \alpha_B + \tau_t + \varepsilon_{it}$$
 (2)


where

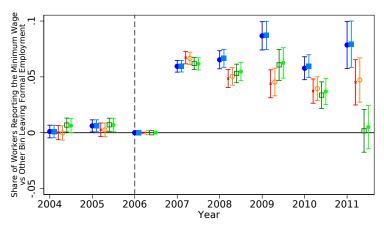
- i indexes workers
- MW_{it} is an indicator for being in the minimum wage bin (vs in the control wage bin)
- $ightharpoonup lpha_B$ are wage bin fixed effects (minimum wage vs control wage bin)
- ightharpoonup au_t are year fixed effects

Raw Trends: Private Sector Employees

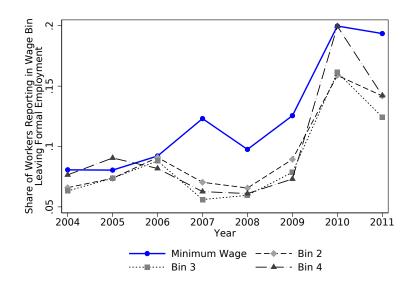


Regression Estimates: Private Sector Employees

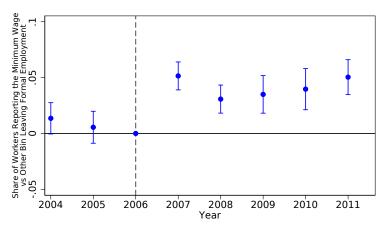
 Relative to Bin 2, No Controls Relative to Bin 3, No Controls Relative to Bin 4, No Controls Relative to Bin 2, With Controls Relative to Bin 3, With Controls Relative to Bin 4, With Controls


Regression Estimates: Private Sector Employees

- Relative to Bin 2, No Controls
- * Relative to Bin 3, No Controls
- □ Relative to Bin 4, No Controls

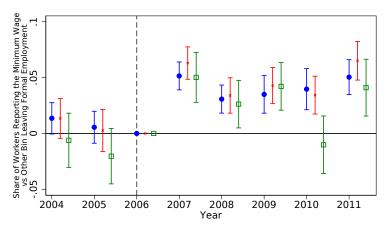

Relative to Bin 2, With Controls Relative to Bin 3, With Controls Relative to Bin 4, With Controls

Regression Estimates: Private Sector Employees



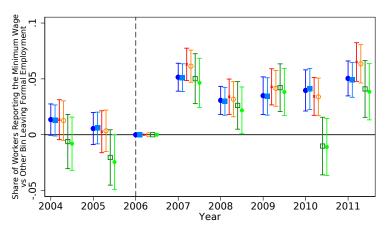
- Relative to Bin 2, No Controls Relative to Bin 2, With Controls
- Relative to Bin 3, No Controls O Relative to Bin 3, With Controls
- □ Relative to Bin 4, No Controls Relative to Bin 4, With Controls

Raw Trends: Self-Employed

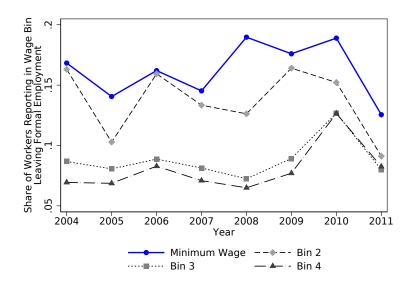


Regression Estimates: Self-Employed

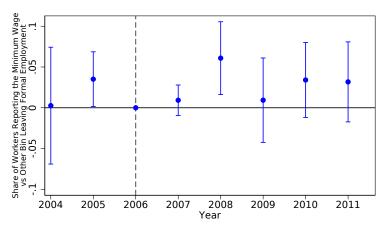
 Relative to Bin 2, No Controls Relative to Bin 3, No Controls Relative to Bin 4, No Controls Relative to Bin 2, With Controls Relative to Bin 3, With Controls Relative to Bin 4, With Controls


Regression Estimates: Self-Employed

- Relative to Bin 2, No Controls
- * Relative to Bin 3, No Controls
- □ Relative to Bin 4, No Controls

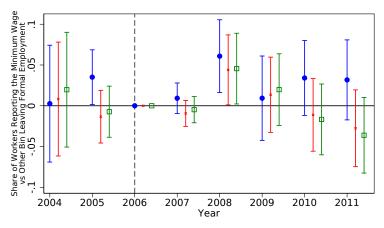

Relative to Bin 2, With Controls Relative to Bin 3, With Controls Relative to Bin 4, With Controls

Regression Estimates: Self-Employed



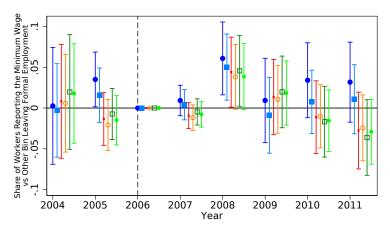
- Relative to Bin 2, No Controls Relative to Bin 2, With Controls
- Relative to Bin 3, No Controls O Relative to Bin 3, With Controls
- □ Relative to Bin 4, No Controls Relative to Bin 4, With Controls

Raw Trends: Public Sector Employees



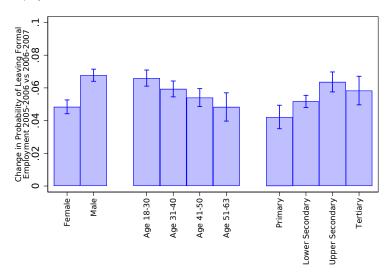
Regression Estimates: Public Sector Employees

 Relative to Bin 2, No Controls Relative to Bin 3, No Controls Relative to Bin 4, No Controls Relative to Bin 2, With Controls Relative to Bin 3, With Controls Relative to Bin 4, With Controls

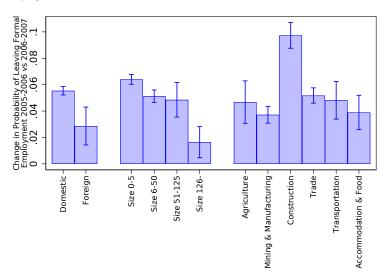

Regression Estimates: Public Sector Employees

- Relative to Bin 2, No Controls
- * Relative to Bin 3, No Controls
- □ Relative to Bin 4, No Controls

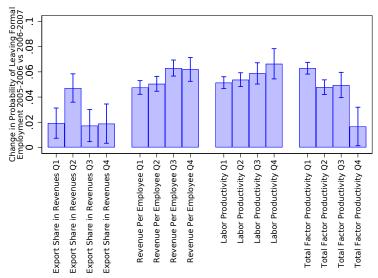
Relative to Bin 2, With Controls Relative to Bin 3, With Controls Relative to Bin 4, With Controls


Regression Estimates: Public Sector Employees

- Relative to Bin 2, No Controls
 Relative to Bin 2, With Controls
- Relative to Bin 3, No Controls O Relative to Bin 3, With Controls
- □ Relative to Bin 4, No Controls Relative to Bin 4, With Controls


Heterogeneity: Worker Characteristics

Private Employees


Heterogeneity: Firm Characteristics

Private Employees

Heterogeneity: Firm Quality

Private Employees

Model

- ▶ Initial income tax rate τ_0 (assume optimal without evasion)
- Initial gross minimum wage W^{m0} and net minimum wage $W^{m,net}=W^{m0}(1- au_0)$

- ► Follow Butcher, Dickens and Manning (2012) and Tonin (2011)
- Consider a case where monopsonistic employers set wages
- ► Employers differ in their marginal products of labor (productivity is denoted by *A*) and they compete over a fixed supply of workers *L*
- Optimal wage:

$$W_i^* = \frac{\varepsilon}{1 + \varepsilon} A_i < A_i, \tag{3}$$

where ε is the wage elasticity of labour supply to the firm

▶ Introduction of a minimum wage W^{m0} has three implications:

- ► Follow Butcher, Dickens and Manning (2012) and Tonin (2011)
- Consider a case where monopsonistic employers set wages
- ► Employers differ in their marginal products of labor (productivity is denoted by *A*) and they compete over a fixed supply of workers *L*
- Optimal wage:

$$W_i^* = \frac{\varepsilon}{1 + \varepsilon} A_i < A_i, \tag{3}$$

where ε is the wage elasticity of labour supply to the firm

- ▶ Introduction of a minimum wage W^{m0} has three implications:
 - 1. Firms with $A_i < W^{m0}$ exit the market;

- ► Follow Butcher, Dickens and Manning (2012) and Tonin (2011)
- Consider a case where monopsonistic employers set wages
- ► Employers differ in their marginal products of labor (productivity is denoted by *A*) and they compete over a fixed supply of workers *L*
- Optimal wage:

$$W_i^* = \frac{\varepsilon}{1+\varepsilon} A_i < A_i, \tag{3}$$

where arepsilon is the wage elasticity of labour supply to the firm

- ▶ Introduction of a minimum wage W^{m0} has three implications:
 - 1. Firms with $A_i < W^{m0}$ exit the market;
 - 2. Firms with $W_i^* > W^{m0}$ continue to pay the same wage as before;

- ► Follow Butcher, Dickens and Manning (2012) and Tonin (2011)
- Consider a case where monopsonistic employers set wages
- ► Employers differ in their marginal products of labor (productivity is denoted by *A*) and they compete over a fixed supply of workers *L*
- Optimal wage:

$$W_i^* = \frac{\varepsilon}{1+\varepsilon} A_i < A_i, \tag{3}$$

where ε is the wage elasticity of labour supply to the firm

- ▶ Introduction of a minimum wage W^{m0} has three implications:
 - 1. Firms with $A_i < W^{m0}$ exit the market;
 - 2. Firms with $W_i^* > W^{m0}$ continue to pay the same wage as before;
 - 3. Firms with $A_i > W^{m0} > W_i^*$ will pay the minimum wage, creating a spike at the minimum wage. (Mass B)

- ▶ Consider a reform that raises the tax rate to $\tau_1 > \tau_0$ and leaves the net minimum wage unchanged, resulting in a new gross minimum wage of $W^{m1} = \frac{W^{m,net}}{1-\tau_1} > W^{m0}$
- Three implications:

- ▶ Consider a reform that raises the tax rate to $\tau_1 > \tau_0$ and leaves the net minimum wage unchanged, resulting in a new gross minimum wage of $W^{m1} = \frac{W^{m,net}}{1-\tau_1} > W^{m0}$
- ▶ Three implications:
 - 1. Firms with $A_i < W^{m1}$ exit the market (Mass βB);

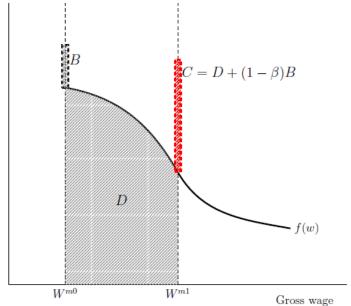
- ▶ Consider a reform that raises the tax rate to $\tau_1 > \tau_0$ and leaves the net minimum wage unchanged, resulting in a new gross minimum wage of $W^{m1} = \frac{W^{m,net}}{1-\tau_1} > W^{m0}$
- ▶ Three implications:
 - 1. Firms with $A_i < W^{m1}$ exit the market (Mass βB);
 - 2. Firms with $W_i^* > W^{m1}$ continue to pay the same wage as before;

- ▶ Consider a reform that raises the tax rate to $\tau_1 > \tau_0$ and leaves the net minimum wage unchanged, resulting in a new gross minimum wage of $W^{m1} = \frac{W^{m,net}}{1-\tau_1} > W^{m0}$
- Three implications:
 - 1. Firms with $A_i < W^{m1}$ exit the market (Mass βB);
 - 2. Firms with $W_i^* > W^{m1}$ continue to pay the same wage as before;
 - 3. Firms with $A_i > W^{m1} > W_i^*$ will pay the new minimum wage, creating a new spike, denoted by C. (Mass $C = D + (1 \beta)B$);

- ▶ Consider a reform that raises the tax rate to $\tau_1 > \tau_0$ and leaves the net minimum wage unchanged, resulting in a new gross minimum wage of $W^{m1} = \frac{W^{m,net}}{1-\tau_1} > W^{m0}$
- ► Three implications:
 - 1. Firms with $A_i < W^{m1}$ exit the market (Mass βB);
 - 2. Firms with $W_i^* > W^{m1}$ continue to pay the same wage as before;
 - 3. Firms with $A_i > W^{m1} > W_i^*$ will pay the new minimum wage, creating a new spike, denoted by C. (Mass $C = D + (1 \beta)B$);
- ▶ Loss of tax revenue due to mass βB leaving the labor market:

$$L = \tau_0 W^{m0} \times \beta B \tag{4}$$

- Consider a reform that raises the tax rate to $\tau_1 > \tau_0$ and leaves the net minimum wage unchanged, resulting in a new gross minimum wage of $W^{m1} = \frac{W^{m,net}}{1-\tau_1} > W^{m0}$
- ► Three implications:
 - 1. Firms with $A_i < W^{m1}$ exit the market (Mass βB);
 - 2. Firms with $W_i^* > W^{m1}$ continue to pay the same wage as before;
 - 3. Firms with $A_i > W^{m1} > W_i^*$ will pay the new minimum wage, creating a new spike, denoted by C. (Mass $C = D + (1 \beta)B$);
- ▶ Loss of tax revenue due to mass βB leaving the labor market:

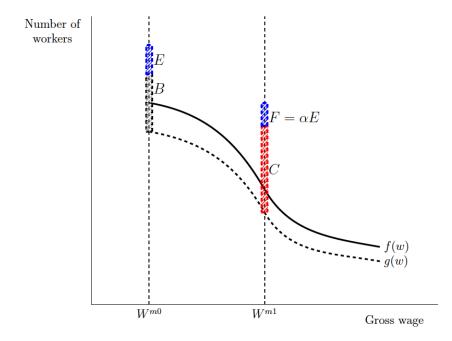

$$L = \tau_0 W^{m0} \times \beta B \tag{4}$$

Gain of tax revenue due to higher tax rate:

$$G = \tau_1 W^{m0} \times (1 - \beta)B + \int_{W^{m0}}^{W^{top}} (\tau_1 - \tau_0) w f(w) dw,$$
 (5)

where W^{top} is the highest gross wage to which the analyzed

Number of workers



- Assume that there is tax evasion: f(w) is the true wage distribution, g(w) is the observed/reported wage distribution
- Since the minimum wage is binding, tax evaders also bunch at W^{m0}
- ▶ When increasing the tax, the government realizes an additional net gain (NG) as a result of the tax increase:

$$NG = F \times \tau_1 W^{m1} - E \times \tau_0 W^{m0} = = E \times (\alpha \tau_1 W^{m1} - \tau_0 W^{m0}).$$
 (6)

▶ *NG* is positive if:

$$\frac{W^{m1}}{W^{m0}} = \frac{1 - \tau_0}{1 - \tau_1} > \frac{\tau_0}{\alpha \tau_1}.$$
 (7)

► Empirical results suggest substantial tax evasion around the minimum wage in Hungary

- ► Empirical results suggest substantial tax evasion around the minimum wage in Hungary
- Large reporting response to increase in audit threat

- Empirical results suggest substantial tax evasion around the minimum wage in Hungary
- Large reporting response to increase in audit threat
- ▶ But also increase in probability of leaving formal employment

Discussion

- Empirical results suggest substantial tax evasion around the minimum wage in Hungary
- Large reporting response to increase in audit threat
- ▶ But also increase in probability of leaving formal employment
- Implies important trade off for tax policy

Discussion

- Empirical results suggest substantial tax evasion around the minimum wage in Hungary
- Large reporting response to increase in audit threat
- ▶ But also increase in probability of leaving formal employment
- Implies important trade off for tax policy
- ► In the presence of evasion in the form of underreporting at the minimum wage
 - may want to tax the minimum wage

Summary Statistics

	Priv Sector Emp Mean	Self-emp Mean	Public Sector Emp Mean
Age	38.89	41.93	42.17
Share Male	0.56	0.65	0.27
Monthly Earnings (HUF)	155,165	72,932	191,774
Education Level			
Primary	0.14		0.14
Lower Secondary	0.48		0.12
Upper Secondary	0.27		0.33
Tertiary	0.11		0.41
Person-Year Observations	10,221,529	960,638	2,496,331
Unique Individuals	2,119,527	273,879	506,534

Data and Sample

Summary Statistics of Firm Indicators

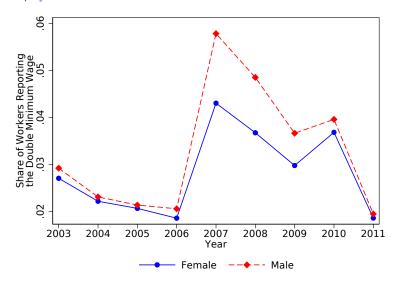
	Weighted by Firm Size			
	Mean	Std. Dev.	Median	
Observed Firm Size	1,417	4,471	43	
Foreign Ownership	0.29	0.45	0	
Export Share of Revenue	0.3	0.38	0.05	
Annual Revenue per Employee (HUF)	28,929	201,476	11,764	
Annual Labor Productivity (HUF)	6,270	37,666	3,024	
Total Factor Productivity	0.86	1.04	0.86	

Data and Sample

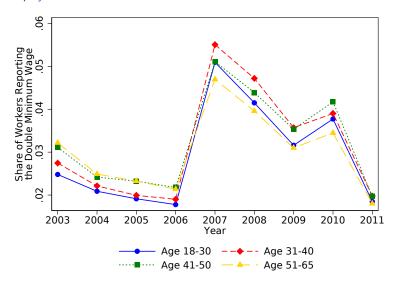
Pooled Regression: Reporting Response

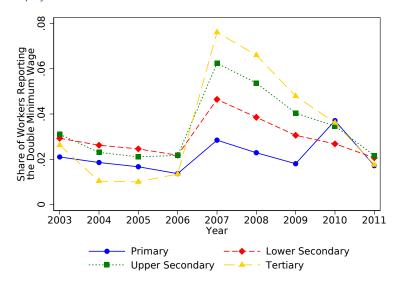
	(1)	(2)
Post × Private Sector Employee	0.022*** [0.002]	0.022*** [0.002]
$Post \times Self\text{-}Employed$	0.114*** [0.001]	0.115*** [0.001]
Controls	. ,	×
N	12,333,359	12,276,191

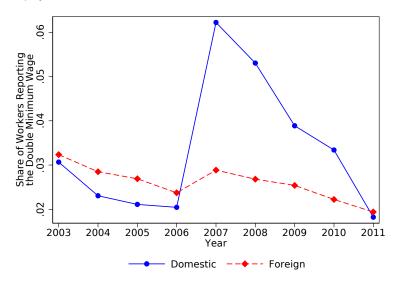
Robust standard errors clustered at the firm level in brackets *** p<0.01, ** p<0.05, * p<0.1

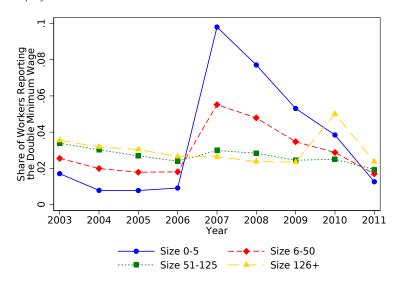

Pooled Regression: Reporting Response

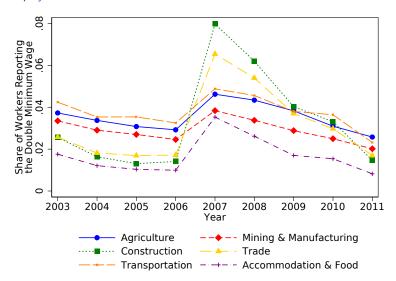
	(1)	(2)
Post × Private Sector Employee	0.022*** [0.002]	0.022*** [0.002]
$Post \times Self\text{-}Employed$	0.114*** [0.001]	0.115*** [0.001]
Controls	. ,	×
N	12,333,359	12,276,191

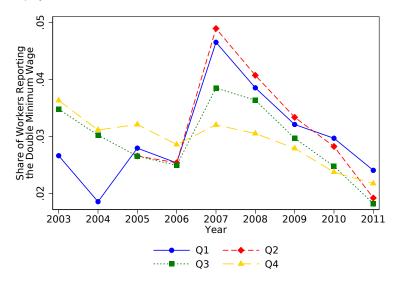

Robust standard errors clustered at the firm level in brackets *** p<0.01, ** p<0.05, * p<0.1


Heterogeneity: By Gender

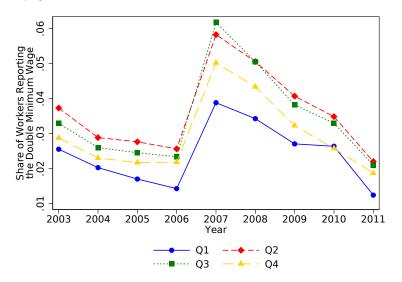

Heterogeneity: By Age


Heterogeneity: By Education

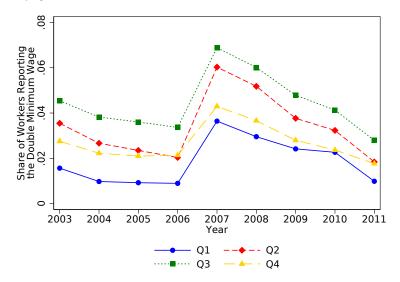

Heterogeneity: By Ownership

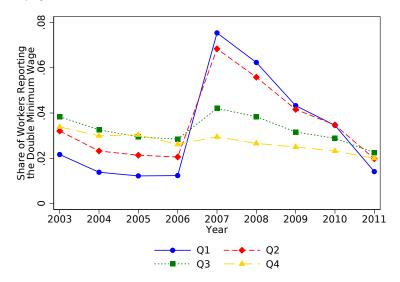

Heterogeneity: By Size

Heterogeneity: By Industry



Heterogeneity: By Export Share in Revenues




Heterogeneity: By Revenue Per Employee

Heterogeneity: By Labor Productivity

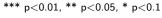
Heterogeneity: By Total Factor Productivity

Regression Estimates: Private Sector Employees

Reference	(1)	(2)	(3)	(4)	(5)	(6)
bin:	Bin 2	Bin 2	Bin 3	Bin 3	Bin 4	Bin 4
Post × Min. W.	0.048***	0.048***	0.037***	0.038***	0.049***	0.050***
	[0.002]	[0.002]	[0.002]	[0.002]	[0.005]	[0.005]
Controls		×		×		×
N	2,044,434	2,031,259	2,042,056	2,029,208	1,886,220	1,874,220

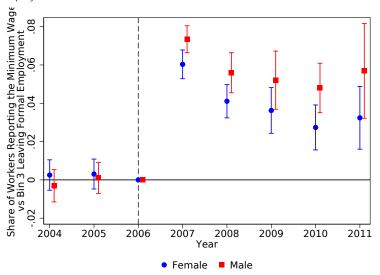
◆ Back

Regression Estimates: Self-Employed

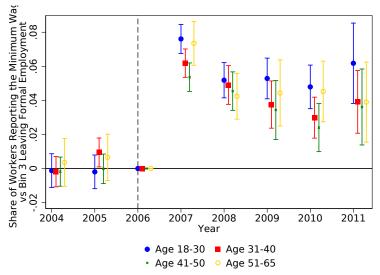

Post 0.021***	0.021***	0.018***	0.017***	0.021***	0.020***
× Min. W. [0.003]	[0.003]	[0.004]	[0.004]	[0.005]	[0.005]
Controls	×		×		×
N 479,548	476,796	488,175	485,364	457,234	454,569

◆ Back

Regression Estimates: Public Sector Employees


Reference	(1)	(2)	(3)	(4)	(5)	(6)
bin:	Bin 2	Bin 2	Bin 3	Bin 3	Bin 4	Bin 4
Post × Min. W.	0.013	0.010	0.019**	0.018**	0.020**	0.018**
	[0.011]	[0.009]	[0.009]	[0.009]	[0.009]	[0.009]
Controls		×		×		×
N	90,499	90,136	175,770	175,233	194,230	193,722

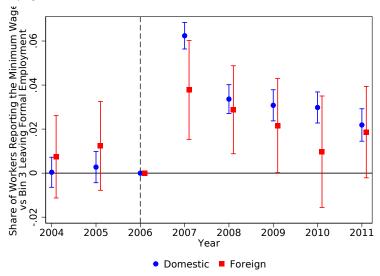
Robust standard errors, clustered at the firm level in brackets



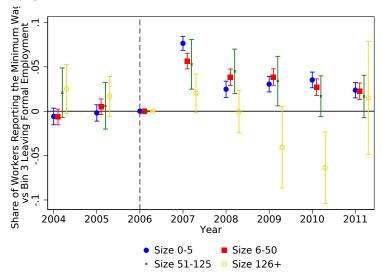
Heterogeneity: By Gender



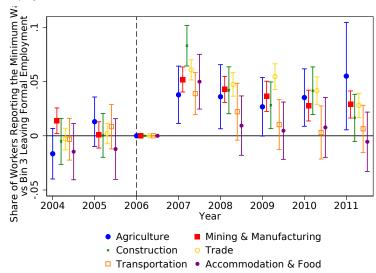
Heterogeneity: By Age

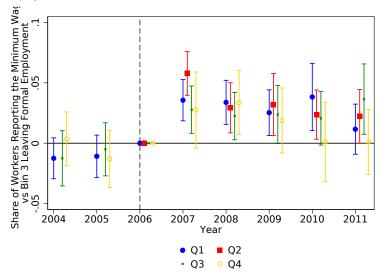


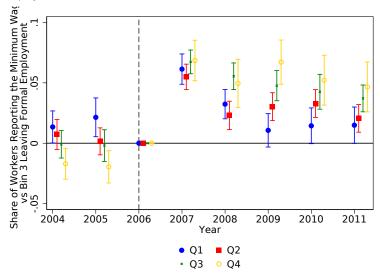
Heterogeneity: By Education



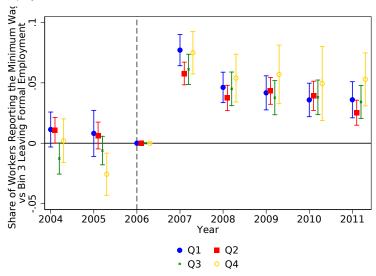
Heterogeneity: By Ownership



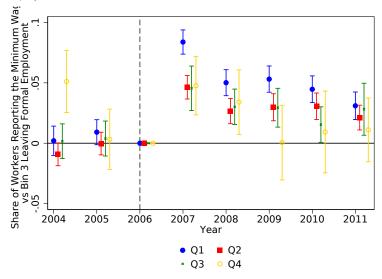

Heterogeneity: By Size


Heterogeneity: By Industry

Heterogeneity: By Export Share in Revenues



Heterogeneity: By Revenue Per Employee



Heterogeneity: By Labor Productivity

Heterogeneity: By Total Factor Productivity

