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Abstract 

 

There lies a network structure between fixed tree and minimum cost spanning tree networks 

that has not been previously analyzed from a cooperative game theoretic perspective, namely, 

directed acyclic graph (DAG) networks. In this paper we consider the cost allocation game 

defined on DAG-networks. We briefly discuss the relation of DAG-games with other network-

based cost games. We demonstrate that in general a DAG-game is not concave, even its core 

might be empty, but we provide an efficiently verifiable condition satisfied by a large class of 

directed acyclic graphs that is sufficient for balancedness of the associated DAG-game. We 

introduce a network canonization process and prove various structural results for the core of 

canonized DAG-games. In particular, we characterize classes of coalitions that have a 

constant payoff in the core. In addition, we identify a subset of the coalitions that is 

sufficient to determine the core.  
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Összefoglaló 

 

Cikkünkben a standard fa játékok egy általánosításával foglalkozunk, amelyben a hálózat 

irányított aciklikus gráfként modellezhető. Röviden bemutatjuk, hogy a játék milyen 

kapcsolatban áll más hálózati  költségjátékokkal. Megmutatjuk, hogy a játék nem konkáv, és a 

magja akár is üres lehet. Ugyanakkor egy hatékonyan ellenőrizhető feltételt is adunk, amely 

mellett a játék magja nem üres és amelyet irányított aciklikus gráfok nagy családja kielégít. 

Bevezetünk egy kanonizációs eljárást és számos strukturális eredményt bizonyítunk 

kanonizált irányított aciklikus gráfokon értelmezett játékokra. Többek között karakterizáljuk 

azoknak a játékosoknak a halmazát, akiknek a kifizetése a magban konstans 0, illetve 

megadjuk a koalícióknak egy olyan részhalmazát, amelyek már önmagukban meghatározzák 
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On the Core of Directed Acyclic Graph Games

Balázs Sziklai∗† Tamás Solymosi ‡ Tamás Fleiner†
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Abstract

In this paper we consider a natural generalization of standard tree games where

the underlying network is a directed acyclic graph. We brie�y discuss the relation of

directed acyclic graph (DAG) games with other network-based cost games. We show

that in general a DAG-game is not concave, even its core might be empty, but we

provide an e�ciently veri�able condition satis�ed by a large class of directed acyclic

graphs that is su�cient for balancedness of the associated DAG-game. We introduce

a network canonization process and prove various structural results for the core of

canonized DAG-games, for example, we characterize classes of coalitions that have

a constant payo� in the core. In addition, we identify a subset of the coalitions that

is su�cient to determine the core.

Keywords: Cooperative game theory, Directed acyclic graphs, Core, Acyclic

directed Steiner tree

JEL-codes: C71

1 Introduction

Standard tree games form one of the most studied class of cost allocation games. In

its most basic form (Megiddo, 1978), we have a (directed) tree, where nodes represent

players, arcs represent connection possibilities between the nodes, and a non-negative

connection cost is assigned to each arc. There is a special node, the so called root of

the tree. This node represents the provider of some kind of service (e.g. electricity) that

∗The author thanks the funding of the Hungarian Academy of Sciences under its Momentum Pro-

gramme (LD-004/2010).
†Research was funded by OTKA grant K108383.
‡Research was funded by OTKA grant K101224 and by the Hungarian Academy of Sciences under its

Momentum Programme (LD-004/2010).
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can be obtained via the given tree network and the quality of which does not depend on

whether the connection is direct or goes through other nodes. The aim of every player

is to get connected to the root and receive that service. The cost of an arc, however,

is incurred only once, no matter how many players use that link, so forming coalitions

results in cost savings. The main question is how to allocate the connection costs between

the players to induce cooperation.

More general versions of the cost allocation problem on �xed tree networks were con-

sidered by Granot, Maschler, Owen, and Zhu (1996) and Maschler, Potters, and Reijnierse

(2010). The closest to our setting is the standard tree enterprise discussed by Maschler,

Potters, and Reijnierse (2010). We also allow nodes in the network where no player resides

or nodes with more than one residents. Further, we also assume non-negative costs on the

arcs and zero costs on the nodes. We, however, generalize the structure of the network

by assuming that it is a directed acyclic graph (DAG) in which players can have multiple

routes to the root. Naturally, players that have more than one possible way to reach the

root have more bargaining power when it comes down to sharing the costs.

A typical economic situation that can be modeled in this way is the cost allocation

of infrastructural developments. Consider for example a group of towns that would like

to connect themselves to a water reserve. Clearly not every town has to build a direct

pipeline to the source. A possible solution is to connect the nearest towns with each other

and then one of the towns with the reserve. The towns that are already connected to the

water system can force the rest to pay some of their construction cost, otherwise they

can close down the outgoing water �ow. On the other hand, no town can be forced to

pay more than the cost of directly connecting itself to the water reserve. Bergantiños,

Lorenzo, and Lorenzo-Freire (2010) and Dutta and Kar (2004) provide further examples

of this kind.

One of the consequence of the more general network structure is that even under the

aforementioned standardization assumptions the computation of the cost of a coalition

(i.e. �nding the cheapest subnetwork that connects all players in the coalition to the root)

amounts to solving the so-called acyclic directed Steiner tree problem1, which is NP-hard

(Hwang, Richards, and Winter, 1992). The computation of the entire cost function for all

coalitions, therefore, could be prohibitive in practice. Another important consequence is

that, unlike for standard tree games, the core of the cost game associated to our standard

DAG-network might be empty, so a stable solution of the cost allocation problem might

not exist. We provide a su�cient condition for non-emptiness of the core that is satis�ed

for a large class of directed acyclic graph games. Unlike for standard tree games, even

these canonical DAG-games need not be concave. We provide further structural results

1Also known as the Steiner arborescence problem.
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with respect to the core. We identify 'free riders' i.e. players that does not pay anything

in any core allocation. Additionally, we characterize coalitions that have a constant zero

excess in the core. Finally we introduce the concept of dually essential coalitions - a

relatively small class of coalitions which are su�cient in themselves to determine the

linear inequality system that describes the core. We �rmly believe that these results

could be utilized in the computation of the nucleolus, or other core-related cooperative

solutions for canonical DAG-games.

Although we deal with cost allocation problems on a rooted directed network, some

of our results resemble well-known properties of monotonic minimum cost spanning tree

(mMCST) games that are associated with undirected networks (Bird, 1976; Granot and

Huberman, 1981, 1984; Granot and Maschler, 1998). On the other hand airport games

(Potters and Sudhölter, 1999) and irrigation games (Márkus, Pintér, and Radványi, 2011)

are special cases of our proposed model. Shortest path games, peer group games and

highway games are also very similar in their concept (Rosenthal, 2013; Brânzei, Fragnelli,

and Tijs, 2002; Çiftçi, Borm, and Hamers, 2010). Note that each of these games have a

non-empty core. In order to give more insight into our model let us compare airport games,

standard tree games, DAG-network games, and minimum cost spanning tree games. These

games have the same setup, namely they are based on a rooted graph, where players �

who are located on the nodes � would like to share the construction cost of the edges.

Table 1 summarizes the di�erences of these games, while Figure 1 shows how they are

related to each other.

Game Graph Edges Players/node Convexity Core

Airport path (un)directed 0− n concave non-empty

Standard Tree tree (un)directed 0− n concave non-empty

DAG connected DAG directed 0− n not concave can be empty

mMCST connected undirected 1 not concave non-empty

Table 1: Comparison of graph related cost games

Notice that in case of airport games and standard tree games the edges can be con-

sidered both directed or undirected.

Airport
Games

Standard Tree
Games

MCST
Games

DAG-games

Figure 1: Venn-diagram of graph related cost games
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The outline of the paper is as follows. In the second section we introduce the game

theoretical framework used in the paper. In the third we formally de�ne directed acyclic

graph games. In the forth section we propose a network canonization process and describe

its implications. In the �fth section we discuss the structural results with respect to the

core. Finally we conclude our �ndings with some remarks and we review the possible

directions for future research especially related to the nucleolus of the game.

2 Game theoretical framework

A cooperative cost game is an ordered pair (N, c) consisting of the player set N =

{1, 2, . . . , n} and a characteristic cost function c : 2N → R with c(∅) = 0. The value

c(S) represent how much cost coalition S must bear if it chooses to act separately from

the rest of the players. Let us denote a speci�c cost game by Γ. A cost game Γ = (N, c)

is said to be concave2 if its characteristic function is submodular, i.e. if

c(S) + c(T ) ≥ c(S ∪ T ) + c(S ∩ T ), ∀ S, T ⊆ N.

A solution for a cost allocation game is a vector x ∈ RN . For convenience, we introduce

the following notations x(S) =
∑

i∈S xi for any S ⊆ N , and instead of x({i}) we simply

write x(i). A solution is called e�cient if x(N) = c(N) and individually rational if

x(i) ≤ c(i) for all i ∈ N . The imputation set of the game X(Γ) consists of the e�cient

and individually rational solutions, formally,

X(Γ) = {x ∈ RN | x(N) = c(N), x(i) ≤ c(i) for all i ∈ N}.

Given an allocation x ∈ RN , we de�ne the excess of a coalition S as

exc(S, x) := c(S)− x(S).

The core of the cost allocation game C(Γ) is a set-valued solution where all the excesses

are non-negative. Formally,

C(Γ) = {x ∈ RN | x(N) = c(N), x(S) ≤ c(S) for all S ⊆ N}.

Simpli�cations could be possible in the linear system de�ning the core if we focus on

the following two types of coalitions.

De�nition 1 (Essential coalitions). Coalition S is called essential in game Γ = (N, c) if it

can not be partitioned as S = S1

.∪ . . . .∪Sk with k ≥ 2 such that c(S) ≥ c(S1)+ . . .+ c(Sk).

2Sometimes submodular cost games are called convex instead of concave in the same way we usually

speak of the core of a cost game instead of its anti-core. This terminology is appealing since for instance

Kuipers's results Kuipers (1996) on convex games naturally extends to concave cost games.
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Essential coalitions were introduced in (Huberman, 1980) in order to show that they

form a characterization set for the nucleolus. For more on characterisation sets see (Gra-

not, Granot, and Zhu, 1998). By de�nition, the singleton coalitions are always essential in

every game. It is easily seen that each not essential (i.e. inessential) coalition has a weakly

minorizing partition which consists exclusively of essential coalitions. Moreover, the core

is determined by the e�ciency equation x(N) = c(N) and the x(S) ≤ c(S) inequalities

corresponding to the essential coalitions, all the other inequalities can be discarded from

the core system.

This observation helps us to eliminate large coalitions which are redundant for the

core. We can identify the small redundant coalitions, if we apply idea of essentiality to

the dual game. The dual game (N, c∗) of game (N, c) is de�ned by the coalitional function

c∗(S) := c(N)− c(N \ S) for all S ⊆ N . Clearly, c∗(∅) = 0 and c∗(N) = c(N).

De�nition 2 (Dually essential coalitions). Coalition S is called dually essential in game

Γ = (N, c) if its complement can not be partitioned as N \ S = (N \ T1)
.∪ . . . .∪ (N \ Tk)

with k ≥ 2 such that c∗(N \ S) ≤ c∗(N \ T1) + . . . + c∗(N \ Tk), or equivalently, c(S) ≥
c(T1) + . . .+ c(Tk)− (k − 1)c(N).

Notice that each member of S appears in all of the coalitions T1, ..., Tk, but every

other player appears only in exactly k − 1 times in this family. We call such a system of

coalitions an overlapping decomposition of S.3

By de�nition, all (n − 1)-player coalitions are dually essential in any game. It is

easily checked that if S and T are not dually essential coalitions and T appears in an

overlapping decomposition of S, then S cannot appear in an overlapping decomposition

of T , consequently, each coalition that is not dually essential (i.e. dually inessential)

has a weakly minorizing overlapping decomposition which consists exclusively of dually

essential coalitions. Moreover, the core of (N, c) can also be determined by the dual

e�ciency equation x(N) = c∗(N) and the x(S) ≥ c∗(S) dual inequalities corresponding

to the complements of the dually essential coalitions, all the other dual inequalities can

be discarded from the dual core system.

It can be easily veri�ed (e.g. by applying Theorem 2.3 in (Granot, Granot, and Zhu,

1998)) that dually essential coalitions characterize the nucleolus as well. We intend to

construct an e�cient algorithm for the nucleolus in a subsequent paper based on the

structural results presented here.

3For a more general de�nition, where the complements of the overlapping coalitions need not form

a partition of the complement coalition, see e.g. (Brânzei, Solymosi, and Tijs, 2005) and the references

therein.
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3 De�nition and basic properties of the game

A directed acyclic graph network D or shortly a DAG-network is given by the following:

• G(V,A) is a directed acyclic graph, with a special node - the so called root of G,

denoted by r - such that from each other node of G there leads at least one directed

path to the root. G is considered to be a simple graph, i.e. it has no loops or parallel

arcs.

• There is a cost function δ : A→ R+ ∪ {0} that assigns a non-negative real number

to each arc. This value is regarded as the construction cost of the arc.

For a subgraph T , V (T ) denotes the node set of T . Similarly A(T ) denotes its arc

set, while Ap is used for the set of arcs that leave node p. We call nodes that have

one leaving arc passages, while nodes that have more than one leaving arcs are called

junctions. Junctions that have more than one leaving zero cost arcs (or simply zero arcs)

are called gates.

Let N be a set of players and let R : N → V \{r} be the residency function that maps

N to the node set of G. If player i is assigned to node p we say that player i resides at

p. A node is occupied if at least one player resides in it. Note that unoccupied leafs are

redundant and can be omitted from the network. The residency function is not assumed

to be injective and/or surjective, but it is a proper function. It means that any one player

resides at exactly one node (the root is excluded), but there can be other unoccupied

nodes or nodes having more than one residents. The set of residents of a subgraph T is

denoted by N(T ), formally, N(T ) = R−1(V (T )).

For a subgraph T , we de�ne its construction cost C(T ) as the total cost of the arcs in

T , i.e. C(T ) =
∑

a∈A(T ) δ(a). A path whose end point is the root is called a rooted path.

A connected subgraph of G that is a union of rooted paths is called a trunk. For each

coalition S, let TS denote the set of trunks that have maximum number of arcs among

the cheapest trunks that connect all players in S to the root. We say that a trunk T

corresponds to a node set B if V (T ) = B. Similarly we say that a coalition S corresponds

to the trunk T if T ∈ TS. Note that more than one coalition can correspond to the same

trunk.

The characteristic function of the cost allocation game that is associated with the pair

(D,R), or shortly a DAG-game (D,R), is de�ned as follows.

c(D,R)(S)
def
= C(T ) T ∈ TS.

The de�nition is motivated by the fact that by leaving the grand coalition the players in

S need not pay more than c(D,R)(S) to get connected to the root. As any trunk in TS has

the same construction cost, c(D,R)(S) is well-de�ned.
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It is straightforward to see that the characteristic function of any DAG-game is non-

negative, monotone and subadditive (even strongly subadditive, i.e. c(S)+c(T ) ≥ c(S∪T )

holds for any not necessarily disjoint coalitions S and T ). On the other hand, Figure 2/A

shows an example when a stronger property, submodularity is not satis�ed.

Let S1 = {1, 3} and S2 = {2, 3}, then

3 + 2 = c(S1) + c(S2) < c(S1 ∪ S2) + c(S1 ∩ S2) = 4 + 2,

thus we conclude that DAG-games need not be concave.

The following example demonstrates that DAG-games need not even be balanced.

Consider the DAG-network (D,R) depicted in Figure 2/B. The cost of connecting any

two-player coalition is 3, however c(D,R)(N) = 5 which leaves the core empty.

r r

c{3}

b{2}a{1}

Example A Example B

0

3

1

1

1 1

1 1 1 1

1 1 1

g{1}

e{2} f{3}

a b c

Figure 2: The �rst example shows that the characteristic function need not be submodular.

Example B displays a DAG-network that induces a cost game with an empty core. The

residents of the nodes are given in braces in both cases.

Later we will show that the condition

(*) there must be a resident at each node with more than one entering arc and with

leaving arc(s) all of positive cost

is su�cient for a DAG-game to have a non-empty core. Notice that property (*) can be

checked e�ciently. In the following we will assume that (*) holds for any (D,R) network.

Finally we note that in general it is computationally hard to calculate the characteristic

function value of a given coalition. Finding an element of TS for an arbitrary S ⊂ N is

equivalent to the acyclic directed Steiner tree problem, which is � as we mentioned earlier

� NP-hard.

4 The canonization process and its consequences

We say that DAG-game Γ(D,R) is in canonical form if the following properties are ful�lled:
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P1 Each junction has a leaving zero arc.

P2 For each passage the cost of the leaving arc is positive.

P3 There resides a player in each passage.

P4 Each arc is used at least by one coalition.

To transform a DAG-game into a form where property P1 is ful�lled we have to per-

form the following procedure for each node p ∈ V such that |Ap| ≥ 2 and mine∈Ap δ(a) =

αp > 0.

1. Introduce an unoccupied new node p′ with the same set of leaving arcs as p has,

but reduce the cost of the arcs by αp.

2. Erase all the arcs that leave p.

3. Finally introduce a new arc from p to p′ with cost αp.

Property P2 can be achieved by contracting each passage that has a leaving zero arc

with the endnode of that arc, by uniting the resident sets of the contracted nodes, and by

eliminating that zero arc. Obtaining both P1 and P2 require equivalent transformations

in the sense that the construction cost of the trunks in TS is unchanged for any coalition

S.

If p is an unoccupied passage and p has only one entering arc then it can be omitted

from the network. The entering and leaving arc of p can be replaced by a single arc with

the aggregated construction cost. Needless to say that this procedure does not change

the costs of the TS trunks either. Note that if a passage has more than one entering arc

then by property (*) it is occupied.

Finally arcs not used in any of the TS subgraphs can be deleted, since they do not

a�ect the characteristic function. Checking P4 could be computationally demanding.

However, we only need it to simplify the proofs, P4 can be neglected for the algorithms.

Figure 3 illustrates the canonization process.

Our �rst observation summarizes the above �ndings.

Observation 3.

• All networks that satisfy (*) can be canonized.

• The characteristic function is una�ected by the canonization process.

Although canonization ensures that TN contains only a single element, this cannot be

said in general about other such sets of trunks. In the following we will assume that TS

contains only a single trunk for any coalition S. This can always be achieved by perturbing
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r r

c{2} d{3}

e{4,5}

b{1}

a

2 3

5 3

20 2

3

D D
c

c{2} d{3}

f

e{4,5}

b{1}

0 1

5 3

5

2

Figure 3: A DAG-network with player set N = {1, 2, 3, 4, 5} before and after canonization.

the positive arc costs. We will refer to TS as this unique trunk that has maximum number

of arcs among the cheapest trunks that connect all members of S to the root.

As the residency function R becomes �xed after the canonization, from now on we

will drop it from the notation and simply write cD. We will denote by ΓD the cost game

induced by cD, i.e. ΓD = (N, cD). Let us now see some consequences of canonization. We

also need to introduce further notions and notations.

For each node p, the cheapest arcs in Ap are called TN -arcs. The name comes from

the fact that (if P1 holds) an arc is a TN -arc if and only if it is an element of A(TN).

If a, a′ ∈ Ap, a is a TN -arc and δ(a′) > δ(a), then a′ is called a shortcut. Thus every

arc that is not a TN -arc is a shortcut. If there exists a shortcut between p and q it is

always cheaper than any alternative path between these two nodes due to P4 and the

non-negativity of the arc costs (hence the name). If a, a′ ∈ Ap are TN -arcs then the

construction cost of both a and a′ is zero (this is a consequence of P1).

The subgraph associated to the grand coalition (TN) holds special importance. First

this is the graph that will be constructed in the end. All the other arcs are only good for

improving the bargaining positions of certain players. Note that TN is not necessarily a

tree as it may contain some additional zero arcs4. Secondly, TN induces a partial order ≺
on the nodes. We say that p is a ancestor of q 6= p if p can be reached from q via a path

in TN , we denote this by p ≺ q. In such cases we also say that q is an descendant of p.

Node p is a direct ancestor or parent of q if p is an ancestor of q and they are connected

with a TN -arc. This relation is denoted by π(q) whenever the direct ancestor is unique

(gates have more than one parent). If p is a parent of q then q is referred as a direct

4Unlike other trunks, TN can be constructed e�ciently in linear time. The connection cost of any

occupied node is at least as much as the cost of the cheapest arc that leaves that node. Furthermore

every unoccupied node has a leaving zero arc, therefore connecting an unoccupied node does not impose

extra cost. Thus including the cheapest arcs from every node connects all nodes to the root. It follows

that V (TN ) = V and E(TN ) contains every arc that is not a shortcut.
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descendant or child of p. The node set that contains p together with its descendants is

called a full branch and denoted by Bp.

Sometimes we are interested only in some of the descendants of p therefore we cut o�

some segments of Bp. Removing a node from Bp other nodes can become unreachable

too. A speci�c branch, denoted by BQ
p is a subset of Bp that collects nodes that still can

reach p using only TN -arcs after removing the node set Q from Bp. Formally

BQ
p

def
=
{
q ∈ Bp | ∃ Pq−p such that V (Pq−p) ⊂ Bp \Q

}
,

where Pq−p denotes a path in TN that leads from q to p. In other words a branch is the

node set of a union of paths in TN which have a common origin. To emphasize this a

BQ
p branch is also called a p-branch. Note that if BQ

p = BQ′
p then BQ∩Q′

p de�ne the same

node set as well. We say that the BQ
p branch is in standard form if the cardinality of Q

is minimal, in other words if there exists no Q′ such that BQ′
p = BQ

p and |Q′| < |Q|.
We say that the node set B is proper if deleting B from G along with all of its entering

and leaving arcs the root can still be reached on a directed path from any of the remaining

nodes (i.e. the remaining graph is a trunk).

Let us illustrate the above introduced notions and notations with some examples.

Consider again the canonized DAG-network Dc depicted in Figure 3. The only shortcut

in Dc is the one that connects node f with node d. All the other arcs are TN -arcs. The

full branch Bd contains only node d, since d 6≺ f . Furthermore, Bd is a proper branch, for

removing d together with the entering and leaving arcs the graph is still a trunk. Finally,

the node set that corresponds to the trunk T{1,3,4} is V \Bf
c and cDc({1, 3, 4}) = 11.

Finally we conclude this chapter with a representation lemma that helps us visualize

the graph structure of trunks.

Lemma 4. The node set of every trunk that corresponds to a coalition S ⊂ N can be

obtained by deleting some branches from V . The removed branches can be chosen in such

way that each of them originates from a passage. Formally for any S ⊂ N there exists

Q1, . . . , Qk ⊂ V and p1, . . . ,pk ∈ V such that

V (TS) = V \ ∪kj=1B
Qj
pj
,

where pj is a passage for all j ∈ {1, 2, . . . , k}.

Proof. Any trunk T has a representation where V (T ) is obtained by removing branches

from V . This is trivial as any single node is a branch in itself if we trim all its children.

The only thing we need to prove is that these branches can be picked in such way that each

of them originates from a passage. Let {p1, . . . ,pk} ⊂ V \ V (TS) denote those passages

that connect to V (TS) from the outside, i.e. for which π(pj) ∈ V (TS) for all j = 1, . . . , k.

10



Due to the de�nition of TS there exists at least one such passage. Let us remind the reader

that TS is the trunk that has maximum number of arcs among the cheapest subgraphs

that connect S to the root. Therefore any junction that connects to a such trunk with a

zero arc by de�nition is included in TS even if no player of S resides there. If we remove

all the Bp1 , . . . , Bpk
branches from V it can happen that we removed some nodes in V (TS)

as well i.e. V \ (∪kj=1Bpj
) ⊂ V (TS). In order to retain all the nodes of V (TS) we trim

the Bpj
branches where they intersect with V (TS). Let Qj = V (TS) ∩ Bpj

then B
Qj
pj is a

proper branch for any j and V (TS) = V \ (∪kj=1B
Qj
pj ).

The obtained V \ ∪kj=1B
Qj
pj expression is called the standard representation of V (TS),

if the redundant nodes have been removed from the Qj sets, i.e. each B
Qj
pj branch is in

standard form.

5 The core of the canonized DAG-game

The following extension of the cost function will be needed. We de�ne τ(Q,S) as the cost

of the arcs in TS that go out from node set Q, i.e.

τ(Q,S)
def
=

∑
a∈(∪q∈QAq)∩A(TS)

δ(a).

In our �rst lemma we show that the core of a canonized DAG-network game is never

empty.

Lemma 5. C(ΓD) 6= ∅ for any DAG-network D in canonical form.

Proof. We de�ne the standard allocation x̂ of ΓD as follows. For each player i ∈ N let

x̂(i) = δ(ap)

|N(p)| where i ∈ N(p) and ap is one of the leaving TN -arcs of p. We claim that x̂

is a core allocation. Let V ? ⊆ V denote the set of occupied nodes in G and let B ⊂ V be

arbitrary. Note that unoccupied nodes can only be junctions, which have a leaving zero

arc, i.e. δ(ap) = 0 for all p ∈ B \ V ?. Then

x̂(N(B)) =
∑

p∈B∩V ?

|N(p)| · δ(ap)

|N(p)| =
∑

p∈B∩V ?

δ(ap) +
∑

p∈B\V ?

δ(ap) = τ(B,N). (1)

In conclusion, x̂(N(B)) = τ(B,N) for any node set B. In particular, x̂(N) =

τ(V,N) = cD(N). On the other hand, for any S ⊆ N

x̂(S) =
∑

p∈R(S)

|S ∩N(p)| · δ(ap)

|N(p)| ≤
∑

p∈R(S)

δ(ap) ≤
∑

p∈V (TS)

δ(ap) ≤ C(TS) = cD(S),

11



where R(S) = {R(i) : i ∈ S}. The last inequality holds, because
∑

p∈V (TS)
δ(ap) collects

the cost of the cheapest arcs of each node in TS, but A(TS) may contain shortcuts as

well.

The standard allocation is similar to the Bird-rule which was proposed for MCST

games (Bird, 1976). There is an extensive literature devoted to this type of rules. Without

attempting to be comprehensive we refer the reader to (Bergantiños and Vidal-Puga, 2007;

Bogomolnaia and Moulin, 2010; Trudeau, 2012).

Notice that, by monotonicity of the characteristic function, core vectors are non-

negative. Indeed, xi = x(N) − x(N \ i) ≥ cD(N) − cD(N \ i) ≥ 0 for any i ∈ N and

x ∈ C(ΓD).

The following de�nitions will be useful. We say that node q is a key ancestor of node

p, if there are two paths in TN from p to q such that these paths are arc-disjoint except

maybe for some zero arcs (semi-arc-disjoint from now on). The degenerate case when

these two paths completely coincide is also included in this de�nition. Thus if there leads

a zero cost path from p to q then q is a key ancestor of p. Clearly, each junction has

at least one key ancestor. On the other hand, by property P2, a passage could not have

a key ancestor, so we de�ne the only key ancestor of a passage to be itself. For similar

reasons we de�ne the root to be the key ancestor of itself.

The principal ancestor of node p is a unique node q ∈ V , denoted by Π(p) that is a

key ancestor of p and q ≺ q′ for every other key ancestor q′ of p (i.e. the key ancestor

closest to the root5). Notice that a junction can not be a principal ancestor of any of its

descendants. The only principal ancestor that is not a passage is the root.

De�nition 6. We say that an occupied node p is free if x(N(p)) = 0 for any core element

x, i.e. the residents of p do not have to pay to get connected to the root. An unoccupied

node p is called free if Π(p) = r. The set of free nodes is denoted by F .

Note that if p is a passage then the standard allocation would assign positive value

to N(p). In other words every free node is a junction. In our next theorem we will

characterize the set of free nodes. Before we proceed let us state a simple lemma that will

play a crucial role in the proof.

Lemma 7. Let BQ
p be any branch originating from node p. If exc(N(V \Bp), y) = 0 for

any core allocation y, then y(N(BQ
p )) ≤ τ(BQ

p , N). In other words the residents of BQ
p do

not pay more than the costs of their TN -arcs.

Proof. We proceed by contradiction. Suppose for some y ∈ C(Γ), y(N(BQ
p )) > τ(BQ

p , N),

then

5In the Appendix, we provide an e�cient algorithm that �nds the principal ancestor of each node in

a DAG-network.
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cD(N((V \Bp) ∪BQ
p ))) = cD(N(V \Bp)) + τ(BQ

p , N)

exc(N((V \Bp) ∪BQ
p ))), y) = 0 + τ(BQ

p , N)− y(N(BQ
p )) < 0

would contradict the non-negativity of excesses.

Naturally nodes that can reach the root via a zero cost path are free, but there are

less obvious instances. The next theorem gathers the type of nodes that are free.

Theorem 8. Node p belongs to F if and only if Π(p) = r.

Proof. If p is unoccupied we have nothing to prove, therefore we may assume that

|N(p)| > 0.

First we prove the only if part. Suppose p is a free node but its principal ancestor q

is a passage. We modify the standard allocation in the following way. Let ip a resident

of p and iq a resident of q and let

y(ip) = ε,

y(iq) = x̂(iq)− ε,
y(j) = x̂(j) for any other player j ∈ N,

where ε > 0 is a su�ciently small real number (ε = mina∈A δ(a)
|N |+1

will do). Note that x̂(iq) > 0

due to P2. We prove that y ∈ C(ΓD). If S is such that ip, iq ∈ S then y(S) = x̂(S).

If ip 6∈ S 3 iq then y(S) < x̂(S). The only interesting case is when ip ∈ S 63 iq. If

aq ∈ A(TS) then

y(S) = y(S \ ip) + ε ≤ x̂(S \ ip) + x̂(iq) ≤ x̂(S ∪N(q)) ≤ cD(S ∪N(q)) = cD(S),

where the last equality comes from the fact that N(q) can join S for free as S builds aq

anyway. If aq 6∈ A(TS) then there is at least one shortcut in TS. Let this shortcut be a
′.

Then

y(S) = y(S \ ip) + ε = x̂(S \ ip) + ε ≤ τ(R(S), N) + δ(a′) ≤ cD(S),

where we used that x̂(S \ ip) ≤ τ(R(S), N) by (1). The last inequality is obviously true

since apart from the cheapest arcs that leave R(S), the members of S need to build at

least one shortcut, namely a′. We can not overestimate the costs as the cheapest arc that

leave the origin of a′ � the cost of which is included in τ(R(S), N) � is a zero arc due to

P1. To justify the other direction we prove a slightly stronger statement.

Lemma 9. If Π(p) = r then p is free and exc(N(V \Bp), x) = 0 for any x ∈ C(ΓD).
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Let d(q) denote the size of the shortest path in TN leading from q to r. We proceed

by induction on d(p). If d(p) = 0 then p is the root for which exc(N(V \ Br), x) =

exc({∅}, x) = 0 is satis�ed. Let us assume that d(p) = l and the lemma is true for any

node p′ with d(p′) < l where l > 0 integer. Two cases are possible. The �rst is when one

of p's parent is free. Let this node be denoted by f (see Figure 4, Example I.) and let y be

an arbitrary core element. Applying the induction step we obtain exc(N(V \Bf ), y) = 0.

Both p and f are junctions therefore cD(N(V \ Bf )) = cD(N((V \ Bf ) ∪ {p})). Hence

y(N(p)) > 0 would imply exc(N((V \Bf ) ∪ {p}), y) < 0 � a contradiction.

Example I. Example II.

f

p

p

q2

q1

f
r

Bp

Bf

V \Bf

Bp

V \Bf

B2

B1

Figure 4: Subgraphs of TN . Dashed lines indicate a path or paths.

The second case is when none of p's parent is free. As the principal ancestor of p is the

root p must be a gate. There leads paths from p to r in TN which are semi-arc-disjoint.

There may be some intermediary nodes that coincide on these paths. Let the �rst such

node denoted by f (see Figure 4, Example II.). Note that the principal ancestor of f is

the root (f may be the root itself) therefore we can apply the induction step. That means

that f is free and exc(N(V \ Bf ), y) = 0 for any core allocation y. This also implies that

τ(Bf , N) = y(N(Bf )).

There leads two arc-disjoint path from p to f in TN . Let q1 and q2 be the direct

ancestors of p that lie on these paths. We can separate the node set Bf \ Bp into two

f -branch B1 and B2 such that q1 ∈ B1, q2 ∈ B2 and B1 ∩ B2 = {f}. For instance such a

partition can be obtained by coloring the path from q1 to f red and the path from q2 to f

blue (as f is contained in both paths we can pick either one of the colors, say red). Then

we color each node one-by-one in Bf \Bp in the following way. Take a direct descendant

of a colored node. If it has a red parent we paint it red, if it has a blue one we paint it

blue. If it has both a red and a blue parent paint it arbitrarily with one color. Let B1

contain the red nodes, while B2 the blue ones in addition with f . Indeed the node sets

de�ned in this way are f -branches which satisfy B1 ∪ B2 = Bf \ Bp and B1 ∩ B2 = {f}.
This leads us to
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y(N(Bf )) = τ(Bf , N) = τ(B1 ∪Bp, N) + τ(B2, N)

[τ(B1 ∪Bp, N)− y(N(B1 ∪Bp))] + [τ(B2, N)− y(N(B2)))] = 0.

We implicitly used that f is a junction, therefore its cheapest arc is a zero arc. Fur-

thermore y(N(f)) = 0 since f is free. Therefore it implies no additional cost that both B1

and B2 contain f . The node set B1∪Bp is an f -branch and so is B2, therefore the sums in

the square brackets are non-negative by Lemma 7. It follows that τ(B2, N) = y(N(B2)).

Now let us move the Bp branch from B1 to B2. With exactly the same argument we can

show that τ(B1, N) = y(N(B1)). As N(B1) and N(B2) pay only for their own branch's

construction cost i.e. the cost of the cheapest arcs that leave the B1 and B2 branch. From

N(Bp) = N(Bf ) \ N(B1 ∪ B2) it follows that exc(N(V \ Bp), y) = 0. By Lemma 7 the

BQ
p branch pays at most τ(BQ

p , N) for any Q ⊂ Bp. In particular y(N(p)) = 0 for any

core element y, i.e. p is free. This concludes the proof of Lemma 9 and Theorem 8.

A coalition S is said to be saturated if i ∈ S whenever c(S) = c(S ∪ {i}). Granot,

Granot and Zhu proved that saturated coalitions together with the grand coalition and

the n−1 player coalitions characterize the nucleolus of any monotone cost game (Granot,

Granot, and Zhu, 1998). Moreover the e�ciency equation x(N) = c(N) and the x(S) ≤
c(S) inequalities corresponding to the saturated coalitions determine the core of such

games as well. In the light of these two result we may restrict our attention to this

type of coalitions. In case of DAG-games this property comes with a nice structure.

Saturated coalitions incorporate every player of the trunk on which they reside, formally

S is saturated if and only if S = N(V (TS)).

There are many coalitions whose excess is zero in any core allocation. For instance it

is easy to prove that if p is a passage that is a direct descendant of the root, then N(Bp)

is such a coalition. In the following we characterize the set of saturated coalitions that

bear this property. Let S0 denote the set of saturated coalitions whose excess is zero for

any core allocation, formally

S0 def
= {S ⊆ N | S saturated and c(S) = x(S) for any x ∈ C(Γ)}.

In our next lemma we identify certain branches that pay only for their own construction

cost i.e. the cost of the cheapest arcs that leave the branch. A BQ
p branch is called a

building block if it has the following properties:

• p is a passage whose parent is free,

• all the nodes in Q are free,

• BQ
p does not contain a free node.
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Lemma 10. If BQ
p is a building block, then x(N(BQ

p )) = τ(BQ
p , N) for any core allocation

x.

Proof. Since π(p) is free, it is a junction and x(N(π(p))) = 0. We know from Lemma

9 that exc(N(V \ Bπ(p)), x) = 0 for any core allocation x. It follows that exc(N((V \
Bπ(p)) ∪ {π(p)}), x) = 0 is also true. With a similar argument as in Lemma 7 it can be

shown that x(N(BQ
p )) ≤ τ(BQ

p , N).

Each node of Q has (at least) two semi-arc-disjoint paths that leads to the root. As

BQ
p does not contain a free node one of these paths for each node by-passes BQ

p . We

prove this by contradiction. Let q ∈ Q an arbitrary free node. Suppose there exists two

semi-arc-disjoint paths in TN , P1 and P2 that leads from q to the root and crosses BQ
p .

Let q1 ∈ BQ
p ∩V (P1) be such that there exist no other q′ ∈ BQ

p ∩V (P1) such that q′ ≺ q1.

Similarly let q2 be the node closest to the root that is an element of both BQ
p and P2. As

q1 and q2 lie on semi-arc-disjoint paths, one of them � say q1 � is not p. Thus the P1

path leaves the BQ
p node set at q1 on a zero-arc. There leads a path in TN from q1 to π(p)

through BQ
p that is arc-disjoint of P1. As π(p) is free there leads two semi-arc-disjoint

paths P3 and P4 from π(p) to the root. Without loss of generality we may assume that

P1 intersects with P3 �rst (or at the same time as it intersects with P4). Let us denote

this node by q∗. Note that if q∗ is a common node of P3 and P4 it is a junction, otherwise

the two paths would not be semi-arc-disjoint. Let PA be the path that starts from q1,

follows P1 till q
∗, then reaches the root following P3. Let PB be the path that originates

at q1,reaches π(p) using only TN -arcs and nodes from BQ
p , and goes to the root following

P4. By construction PA and PB are semi-arc-disjoint, thus q1 is free, which contradicts

the assumption that BQ
p is a building block.

It follows that there exists a path in TN for every q ∈ Q that leads to the root, that

does not pass through any node of BQ
p . A straightforward consequence is that BQ

p is a

proper branch and every node in V \BQ
p can reach the root by using only TN -arcs. Note

that there is no zero-arc that leaves BQ
p and enters in V \BQ

p , otherwise B
Q
p would contain

a free node. Thus the node set V \BQ
p corresponds to a trunk, namely to TN(V \BQ

p ). Finally

for any core allocation x

cD(N) = cD(N(V \BQ
p )) + τ(BQ

p , N)

0 = [cD(N(V \BQ
p ))− x(N(V \BQ

p ))] + [τ(BQ
p , N)− x(N(BQ

p ))]

0 = [exc(N(V \BQ
p )), x)] + [τ(BQ

p , N)− x(N(BQ
p ))]

Both expressions in the square brackets are non-negative, thus x(N(BQ
p )) = τ(BQ

p , N).
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Lemma 11. Let ∪kj=1B
Fj
pj be a union of branches such that pj is a passage, π(pj) ∈ F

and Fj ⊂ F for j = 1, . . . , k. Then ∪kj=1B
Fj
pj can be decomposed into a disjoint union of

building blocks and free nodes.

Proof. The proof proceeds by induction on the number of nodes. If ∪kj=1B
Fj
pj consist of

a single node, then k = 1 and BF1
p1

must be a building block. Now suppose the lemma

is true for node sets with less than l nodes and let | ∪kj=1 B
Fj
pj | = l. Let BQ

p1
be a branch

where Q = Bp1 ∩ F and let BQ′
p1

be the standard form of this branch. Note that BQ′
p1

is a

building block and it is a subset of BF1
p1
. Let us delete BQ′

p1
from BF1

p1
. If Q′ ∩ BF1

p1
is not

empty we delete those nodes too (these are free as all the nodes of Q′ are free). If some

descendant of a node in Q′ is a junction then it is free therefore it can be deleted too. If

we deleted all the free nodes in this way and there are still some nodes in BF1
p1

then those

must be passages. Let us denote these by p′1, . . . ,p
′
K . Note that π(p′1), . . . , π(p′K) ∈ F .

Hence the remaining nodes can be written as ∪Ki=1B
F1

p′
i
∪kj=2 B

Fj
pj . By reindexing p′i we are

done as | ∪Ki=1 B
F1

p′
i
∪kj=2 B

Fj
pj | < l.

Now we are ready to characterize the set S0.

Theorem 12. S ∈ S0 if and only if V (TS) can be written as

V (TS) = V \ ∪kj=1B
Fj
pj

where pj is a passage π(pj) ∈ F and Fj ⊂ F for all j ∈ {1, 2, . . . , k}.

Proof. In the light of Lemma 10 and Lemma 11 the only if part can be veri�ed easily.

If the trunk of coalition S can be represented as V (TS) = V \ ∪kj=1B
Fj
pj , then V (TS) is

the complement of a disjoint union of building blocks and free nodes. As the residents of

building blocks and the free nodes pay only for their own construction cost, the rest of

the players have to pay for their own part of TN . Thus from the cD(N) = x(N) equality

it follows that cD(S) = x(S) for any core allocation x. Note that we implicitly used that

every resident of V (TS) is involved in building TS, that is S is saturated.

Now we prove the other direction i.e. S ∈ S0 ⇒ V (TS) = V \ ∪kj=1B
Fj
pj . From Lemma

4 we know that we can choose a representation of V (TS) where pj � the origin of the

removed B
Fj
pj branch � is a passage for all j ∈ {1, 2, . . . , k}. Furthermore π(pj) ∈ V (TS)

and Fj ⊂ V (TS) for all j ∈ {1, 2, . . . , k}.
If TS has a shortcut then the standard allocation induces a non-zero excess for S.

It follows that TS is a connected subgraph of TN . First let us consider a simple graph

structure when only one branch is missing, that is V (TS) = V \ BQ
p . If π(p) is not free

then there exist a core allocation y where y(N(p)) > τ(p, N). The argument is similar

to the reasoning used in the �rst part of Theorem 8. As π(p) is not free, Π(π(p)) is

a passage. A coalition that contains a player from N(p) has to use this passage or go
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around with a shortcut. In either case the standard allocation can be modi�ed: a little

amount can be transferred from N(Π(π(p))) to N(p) without leaving the core. Thus if

the excess of N(V \ BQ
p ) was zero under the standard allocation it is not zero under y.

Now let V (TS) = V \ ∪kj=1B
Fj
pj and let us use the standard representation of V (TS). Take

an arbitrary π(pj). Basically the same argument works as above, we only need to show

that Π(π(pj)) is in V (TS). Suppose on the contrary that Π(π(pj)) 6∈ V (TS). We know

that every path from π(pj) to the root that lies in TN crosses Π(π(pj)). Since TS is a

subgraph of TN it follows that π(pj) 6∈ V (TS). However in the standard representation

pj was chosen such way that π(pj) ∈ V (TS) � a contradiction.

Finally we need to prove that if Fj 6⊂ F then S 6∈ S0. Let f be an arbitrary non-free

element of a given Fj. There leads a path in TN from f to π(pj) through B
Fj
pj . There

leads another path in TS, arc-disjoint from the previous one to the root. By our previous

observation if this path contains a shortcut, then S 6∈ S0. Thus this path lies entirely in

TN . Since π(pj) is free there leads two semi-arc-disjoint paths from π(pj) to the root. It

is impossible that the path from f to the root intersects both of these paths at a passage,

since then they would not be semi-arc-disjoint. Thus there exist two semi-arc-disjoint

paths from f to the root i.e. f is free.

Notice that this direction did not require for coalition S to be saturated. Non-saturated

coalitions can have zero excess in the core, in particular when there are occupied free nodes

in the trunk of S.

The interpretation of Theorem 12 becomes simpler when we consider the free nodes as

some kind of secondary roots. The residents of a free node do not have to pay (Theorem

8), and the residents of a full branch that originates from a free node pay only for their own

branch's construction cost (a consequence of Lemmas 9 and 7). A natural simpli�cation

would be to contract the free nodes with the root. Unfortunately this transformation

would alter the characteristic function of the game, therefore we follow another approach

to describe the core.

The next lemma gives an upper bound on how much certain branches are willing to

pay in the core. Let as be a shortcut that originates from a non-free node p. We say that

as is critical if replacing as with a zero arc would set p free.

Lemma 13. Let p be a junction with a critical shortcut as ∈ Ap. If BQ
p is a p-branch

then x(N(BQ
p )) ≤ τ(BQ

p , N) + δ(as) for any core allocation x.

Proof. If we replaced as with a zero arc, there would exist two semi-arc-disjoint paths

from p to the root. One that leads through an original zero arc of p, and one through as.

We will use a similar argument as in Lemma 9. We color the nodes of the former path
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Figure 5: Schematic picture of D. Dashed lines indicate branches.

red while the nodes of the latter path blue. The nodes contained in both paths (e.g. the

root) are assigned both colors, except for p that is painted only red. Then we color each

node in V one-by-one in the following way. Take a direct descendant of a colored node.

If it has a red parent we paint it red, if it has a blue one we paint it blue. If it has both a

red and a blue parent we paint it red. Among the possible colorings we chose one where

every node in BQ
p was painted red. Let B1 contain the red nodes, while B2 the blue ones.

Every node has been assigned at least one color i.e. B1 ∪B2 = V . The intersection of B1

and B2 contains nodes that coincide on the red and the blue paths. These nodes are free

by construction. In TN(B1) and TN(B2) every player can reach the root by using only arcs

of TN . Thus if x is an arbitrary core allocation, then

cD(N) = cD(N(B1)) + cD(N(B2)),

cD(N)− x(N)− x(N(B1 ∩B2)) = cD(N(B1))− x(N(B1)) + cD(N(B2))− x(N(B2)),

0 = exc(N(B1), x) + exc(N(B2), x),

where the last equality comes from the fact that x(N(B1 ∩ B2)) = 0, as (B1 ∩ B2) ⊂ F .

From the non-negativity of the excesses we obtain that exc(N(B2), x) = 0. Finally

0 ≤ cD(N(B2 ∪BQ
p )) ≤ cD(N(B2)) + δ(as) + τ(BQ

p , N),

0 ≤ exc(N(B2 ∪BQ
p ), x) ≤ cD(N(B2))− x(N(B2)) + δ(as) + τ(BQ

p , N)− x(N(BQ
p )),

0 ≤ 0 + δ(as) + τ(BQ
p , N)− x(N(BQ

p )).

Next we uncover the graph structure of dually essential coalitions. As it will turn

out it is simple and easy to deal with. First we show that dual essentiality is a stricter

property than saturatedness.

Lemma 14. In a DAG-network game dually essential coalitions are either saturated or

consist of n− 1 players.
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Proof. Let S be a non-saturated coalition with at most n − 2 players. We will show

that S is dually inessential. As S is not saturated there exists i ∈ N \ S such that

cD(S) = cD(S ∪ {i}). Let S1 := S ∪ {i} and S2 := N \ {i}. Then S1 ∪ S2 = N and

S1 ∩ S2 = S therefore we can use De�nition 2 since

cD(N) ≥ cD(N \ {i}),
cD(S) ≥ cD(S) + cD(N \ {i})− cD(N),

cD(S) ≥ cD(S1) + cD(S2)− cD(N).

In other words S appears in an overlapping decomposition of S1 and S2, therefore it can

not be dually essential.

The following theorem characterizes dually essential coalitions.

Theorem 15. The dually essential coalitions of the cost game ΓD are the coalitions with

n − 1 player and saturated coalitions whose trunks correspond to node sets of the form

V \BU
q where BU

q is a proper branch and q is a passage.

Proof. We have already seen in Lemma 14 that only saturated and n−1 player coalitions

are dually essential. By Lemma 4 we know that trunks of (saturated) coalitions can be

generated by removing branches from G. The one thing we have to prove is that coalitions

that correspond to trunks that have more missing branches are dually inessential. Let S

be a saturated coalition for which V (TS) = V \∪kj=1B
Qj
pj where k ≥ 2. As D is in canonical

form there resides at least one player in each of the branches. Note that in the standard

representation of V (TS), each of the Qj node sets is either empty or a subset of V (TS).

For convenience's sake let us introduce the following notation B1 = ∪k−1j=1B
Qj
pj and

B2 = BQk
pk
. Then let S1 = N \N(B1) and S2 = N \N(B2). In this way S1 ∪ S2 = N and

S1 ∩ S2 = S. To prove that cD(S) ≥ cD(S1) + cD(S2) − cD(N) holds as well it is enough

to show that the following two inequalities are true.

cD(S1) ≤ cD(S) + τ(B2, N)− τ(Qk, S) (2)

cD(S2) ≤ cD(N)− τ(B2, N) + τ(Qk, S) (3)

Note that it takes at most τ(B2, N) to connect the players residing at B2 to TS. As

BQk
pk

is a proper branch it follows that the nodes in Qk are junctions. Since the nodes in

Qk are direct ancestors of some nodes in B2 they are connected with zero arcs. Therefore

we can save at least τ(Qk, S) amount of cost by connecting Qk through the branch B2

and not through the arcs in (∪q∈Qk
Aq) ∩ A(TS). It is possible that aside from Qk there

are other nodes that can reach the root in a cheaper way using the arcs of B2, but no
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nodes of V (TS) is forced to take a more expensive path. Summarizing the above �ndings

we gather that

cD(S1) ≤ cD(S) + τ(B2, N)− τ(Qk, S)

We can estimate cD(S2) by keeping track how the cost changes as we swift from

TN to TS2 . As N(B2) are not in S2 we can delete B2 and subtract τ(B2, N) amount

of cost from cD(N). Deleting B2 from TN only the direct descendants of B2 can get

disconnected. Therefore the only nodes that may not be connected to the root are Qk

and their descendants. By building (∪q∈Qk
Aq) ∩ A(TS) � the exact same arcs that we

deleted in case of S1 � we can ensure that every node in V \ B2 \ {r} has a leaving

arc. None of these arcs enter to B2, thus we obtained a trunk. Therefore the cost of

reconnecting Qk is at most τ(Qk, S). Altogether we can estimate the cost of S2 by

cD(S2) ≤ cD(N)− τ(B2, N) + τ(Qk, S).

Now adding (2) and (3) together, then subtracting cD(N) from both sides yield us the

desired result.

Notice that Theorem 15 is surprisingly analogous to the one derived by Maschler,

Potters, and Reijnierse (2010) for standard tree games (see Lemma 2.3 in the cited paper).

Although they do not speak of characterization sets the relationship between the two result

is unquestionable.

Whether the core can be described e�ciently with dually essential coalitions, depends

on how many distinct proper branches of standard form exist in the network. Unfor-

tunately as the next example shows there can be exponentially many dually essential

coalitions in a DAG-game.

q1{1} qj{j} qn{n}

p{n+1}

r

0 0 0

1

. . . . . .

ε ε ε

Figure 6: A DAG-network with exponential many proper branches. Solid lines indicate

TN -arcs, while dotted lines are shortcuts.

Consider the DAG-network depicted in Figure 6. The root has only one direct descen-

dant, namely p, while the nodes q1, . . . ,qn are the children of p. Each of the qj nodes
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have one additional arc � a shortcut � that enters the root. The cost of the shortcuts

are chosen in such way that their total cost is less than the cost of the TN -arc of p. For

instance let δ(ap) = 1, and δ(as) = ε = 1
n+1

for each shortcut as ∈ A. Let us assume that

one player resides in each node, the jth player at qj and the (n+ 1)st player at p. Let N ′

denote the set of the �rst n player. For an arbitrary S ⊂ N ′, TS correspond to V \ BQS
p ,

where QS
def
= {qj| j ∈ S}. Thus any subset of N ′ is dually essential. As there are n player

in N ′ there are at least 2n dually essential coalitions in this game.

6 Concluding remarks

In this paper we introduced a new class of cooperative cost game that is based on directed

acyclic graph networks. We analyzed the properties of the game and gave su�cient

conditions for the non-emptiness of the core. We identi�ed 'free riders', i.e. players that

does not pay anything in any core allocation. Additionally, we characterized coalitions

that have a constant zero excess in the core. We also introduced the concept of dually

essential coalitions - a class of coalitions which are su�cient in themselves to determine

the linear inequality system that describes the core or the nucleolus.

Considering their structure and complexity directed acyclic graph games lie somewhere

between standard tree games and monotonic minimum cost spanning tree games. There

is a vast amount of literature concerning both of these class of games. It is an interesting

question how the known results relate to DAG-games. One di�culty that arises with

the appearance of shortcuts � i.e. when we extend the network structure from standard

tree to a directed acyclic graph � is that determining the cost of a coalition becomes

computationally hard. Finding the cheapest trunk that connects a set of nodes to the root

is equivalent to the so called acyclic directed Steiner tree problem, which is known to be

NP-hard. That is, even if the cardinality of the dually essential coalitions is polynomially

bounded from above, we will not be able to e�ciently determine the core by a linear

program. Nevertheless, we believe that the structural results presented here, especially

the characterization of the set of free nodes and the S0 set, will compose the basis of any

further analysis that focuses on the core and related allocations.

The complexity issue related to the computation of the characteristic function also

emerges for monotonic minimum cost spanning tree games. For this latter class of games

�nding the nucleolus is in itself NP-hard (Faigle, Kern, and J., 1998). It seems that the

hardness comes from the undirectedness of the edges, and its unrelated to how many

players reside in a node. In a DAG-network payments �ow in one direction, toward the

root which makes the players hierarchically structured. Thus it seems possible that some

kind of painting algorithm works for DAG-networks (Maschler, Potters, and Reijnierse,

2010). In a subsequent paper we will provide an e�cient algorithm that �nds the nucleolus
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for canonized directed acyclic graph games.

A possibility to expand the model is to consider more service provider, i.e. more

than one root in the graph. Since the free nodes are already behaving like some kind

of secondary roots, this will not change the character or di�culty of the problem. Our

conjecture is that contracting the free nodes with the root results in a game where the

core and the nucleolus is unchanged. However this transformation alters the characteristic

function of the game.
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Appendix A

Let us provide a simple method to identify the principal ancestor of each node in TN .

Double every zero arc in TN and set the capacity of every arc to 1. Now determining the

key ancestors of a node p becomes easy. Let fpq denote the maximum �ow between p

and q. If fpq ≥ 2, then q is a key ancestor of p. The key ancestor closest to the root will

be the principal ancestor. Note that P4 is not needed as the algorithm works with TN

This is a very costly way to map the principal ancestors of the nodes, it takes around

O(m5) time, where m denotes the number of nodes in G. It seems likely that by dynamic

programming the running time can be reduced to O(m3) or even lower. However our goal

was to prove that this problem can be solved in polynomial time. We leave the question

of e�ciency to future research.
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